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Abstract. While Large Language Models (LLMs) excel in world knowl-
edge understanding, adapting them to specific subfields requires pre-
cise adjustments. Due to the model’s vast scale, traditional global fine-
tuning methods for large models can be computationally expensive and
impact generalization. To address this challenge, a range of innovative
Parameters-Efficient Fine-Tuning (PEFT) methods have emerged and
achieved remarkable success in both LLMs and Large Vision-Language
Models (LVLMs). In the medical domain, fine-tuning a medical Vision-
Language Pretrained (VLP) model is essential for adapting it to spe-
cific tasks. Can the fine-tuning methods for large models be transferred
to the medical field to enhance transfer learning efficiency? In this pa-
per, we delve into the fine-tuning methods of LLMs and conduct exten-
sive experiments to investigate the impact of fine-tuning methods for
large models on the existing multimodal model in the medical domain
from the training data level and the model structure level. We show
the different impacts of fine-tuning methods for large models on medi-
cal VLMs and develop the most efficient ways to fine-tune medical VLP
models. We hope this research can guide medical domain researchers
in optimizing VLMs’ training costs, fostering the broader application of
VLMs in healthcare fields. The code and dataset have been released at
https://github.com/TIMMY-CHAN/MILE.

Keywords: Vision-language model · Parameters-efficient fine-tuning ·
Visual question answering.

1 Introduction

The rise of ChatGPT has ignited significant interest in Large Language Models
(LLMs). However, LLMs often require fine-tuning to adapt to specific domains
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such as medicine due to their general-purpose nature. Global fine-tuning methods
are computationally expensive and may compromise model generalization capa-
bilities. Therefore, numerous studies have begun exploring Parameter-Efficient
Fine-Tuning (PEFT) techniques [1, 9, 15, 21] aimed at enabling more efficient
fine-tuning and achieved remarkable success.

Some works [2,18] have attempted to apply PEFT methods to Large Vision-
Language Models (LVLMs). Compared to Natural Language Processing (NLP)
tasks, visual language tasks introduce visual inputs, leading to more diverse con-
tent and requiring more challenging fine-tuning. These endeavours have demon-
strated that PEFT methods successful in LLMs can enhance the few-shot and
zero-shot capabilities of LVLMs or achieve comparable results to global fine-
tuning approaches.

However, despite advancements [12,25,26] in reducing computational require-
ments for fine-tuning LVLMs, for many researchers, particularly those in interdis-
ciplinary fields outside of Computer Science (CS), such as biomedicine, accessing
the computational resources required for large-scale model fine-tuning remains a
significant challenge. The lack of access to server-level GPUs, crucial for effective
model fine-tuning, poses a considerable challenge. Consequently, there is a press-
ing need for small-scale VLMs (which are called basic or fundamental VLMs),
particularly given the privacy concerns surrounding medical images. The legality
and ethical concerns surrounding the upload of private medical images to pub-
licly available LVLMs further emphasize the necessity of investigating whether
PEFT methods, successful in LLMs and LVLMs, can achieve comparable results
when applied to basic VLMs.

To empower researchers in the medical domain with limited computational
resources to effectively fine-tune multi-modal models for practical applications,
we embark on experimental research to investigate the applicability of the LLMs’
tuning methods in the realm of medical multimodal (vision-language) learning. In
this paper, we design a Modularized medIcal vision-Language fine-tuning modEl
(MILE) that builds upon a medical Vision-Language Pretrained (VLP) model
and incorporates various PEFT modules through modular design. Specifically,
from the model structure perspective, we conduct a systematic investigation of
the PEFT methods in the LLMs and develop the corresponding modules which
can be integrated into a generative vision-language baseline model. From the
training data perspective, we propose an instruction-format medical multi-modal
dataset for applying instruction-tuning on different MILE variants. We conduct
in-depth ablation studies on those LLMs’ tuning methods and validate them on
two radiographic image benchmarks. We believe that these empirical analyses
will catalyze the development of fine-tuned medical multimodal models.

Our main contributions are as follows: (i) We systematically explored how
trainable parameters in different medical VLM modules affect overall perfor-
mance, revealing strategies for achieving competitive results akin to global fine-
tuning. (ii) Through extensive experiments, we conducted a novel comparison
of the PEFT methods tailored for small-scale medical VLM based on a baseline
model, offering insights distinct from large-scale models. (iii) We conducted a
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thorough analysis of the impact of instruction-tuning on fine-tuning basic VLP
models and released an instruction-format medical image-text dataset. Our in-
vestigation revealed both positive and negative effects of instruction-tuning, of-
fering a nuanced understanding of its implications for the fine-tuning process of
the small-scale VLP models.

2 Related Work

PEFT Techniques of LLMs: Fine-tuning large pretrained language mod-
els (PLMs) is resource-intensive, often requiring substantial computational re-
sources and training data. To address this challenge, PEFT techniques have
emerged, aiming to enhance PLMs’ performance on specific tasks with mini-
mal changes to model parameters. Various methods have been developed in this
regard. Adapter Tuning [8], Dora [19], LoRA [9] etc. [17, 20] add small compo-
nents to PLMs or the input embedding [1,11] to realize PEFT. Besides methods
that add small components, some PEFT techniques focus on data manipula-
tion to minimize or eliminate changes to the original model weights. OpenAI [1]
and Google [24] have independently introduced instruction-tuning methods that
modify original data into instruction pairs for fine-tuning models, achieving bet-
ter generative results compared to multi-task training. While these PEFT meth-
ods have been successfully applied to LLMs, their impact on small-scale VLMs
remains underexplored, especially in the medical domain.
Medical Vision-Language Models: Recent advancements in the pretraining-
finetuning paradigm have led to the emergence of medical VLMs [3,4,14] based
on VLP models. However, their pretraining and fine-tuning require data scales
of more than 100,000 image-text pairs and the number of trainable parame-
ters for global fine-tuning is not much different from that of PEFT in LVLMs.
Therefore, under the dual factors of large-scale training data and high training
parameters, small-scale VLMs’ training costs remain unaffordable for many re-
searchers. Thus, in this work, we systematically review LLMs’ tuning methods
and discuss their applicability to medical VLMs.

3 Method

3.1 Architecture of MILE

Baseline model: Most VLMs architecture are based on CLIP [22] or BLIP [13].
In this paper, we use MISS [3], a generative multimodal medical VLM as our
baseline model, the architecture has been shown in Figure 1a. MISS has an
image encoder and a Joint Text-Multimodal (JTM) encoder, the former for image
feature extraction and the latter for text feature extraction and multimodal
feature interaction. A text decoder is appended after the JTM decoder for causal
reasoning and text generation. The image encoder of the baseline model is a ViT-
base [7] model; The JTM encoder is designed based on Bert with 12 transformer-
based [23] layers where a cross-attention layer is inserted between the bi-self
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attention layer and the feed-forward layer; the architecture of the text decoder
is similar to the JTM encoder and the bi-self attention layer is replaced by a
causal attention layer.

The Unified Model: To validate the effectiveness of the above PEFT meth-
ods on small-scale medical VLMs, we construct MILE and equip it with 4 mod-
ules of commonly used PEFT methods [9, 15, 17, 20], obtaining four variants:
MILE-LoRA, MILE-Prefix, MILE-IA3, and MILE-PTv2.

Fig. 1: Architecture of MILE with different PEFT modules (a) and PEFT details
in a Transformer layer (b).

• MILE-LoRA: As shown in Figure 1b, low-rank matrixes are selectively
injected into all the attention layers’ parameter matrix query and key in the
image encoder, JTM encoder or text decoder for LoRA-Tuning.

• MILE-(IA)3: For (IA)3-Tuning (IA3) [17], learnable vectors lk, lv and lff
which rescale the key, value and the inner activation are respectively injected
into all the attention layers and feed-forward layers in the image encoder, JTM
encoder or text decoder of the baseline model during tuning, as shown in Fig-
ure 1b.

• MILE-Prefix: For MILE-Prefix, prefix vectors are selectively attached be-
fore the input of the JTM encoder or text decoder, while tuning the image
encoder. When the prefix vectors are only attached before the input of the text
decoder, the input embeddings are defined as z = [PREFIX, x] [15], while the
prefix vectors are attached by both the input of the JTM encoder and text
decoder the input is defined as z = [PREFIX, x, PREFIX ′].

• MILE-PTv2: As shown in Figure 1a, prompt tokens are selectively at-
tached before the input of the JTM encoder or text decoder. Different from
prefix-tuning, all prefixes in the input of each attention layer are derived from a
trainable matrix when we apply P-Tuning v2 [20].

3.2 Instruction-format Data Generation

To analyze the impact of instruction-tuning on basic VLMs, we curated a med-
ical image-text dataset using Instruction templates (details in the Appendix).
’Closed’ templates suit closed-ended questions, and ’Opened’ templates are for
open-ended ones. During training, each QA pair randomly incorporates a tem-
plate. For answer options, inspired by [3], we categorized question attributes and
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created diverse candidate pools. In opened instructions, incorrect answers from
the same attribute are randomly included with the correct answer.

3.3 Training

We use the Slake Dataset [16] and the VQA-RAD Dataset [10] for training,
testing and validating. To ensure a fair comparison of the impact of instruction-
tuning and other PEFT methods on basic VLMs, the setting of the training
hyper-parameter is the same with [3] and the dataset splits are identical to
those used in most current works [3, 4, 14]. The training loss L is the language
modeling loss [6]. For each MILE employing PEFT, the PEFT parameters are
varied during training (if applicable) to investigate the effect of different per-
centage parameter changes on model performance. Each MILE is trained with
both instruction-format data we make and original data provided by the dataset,
getting two different models. Testing is conducted under the original benchmark
and the task is generative, with no candidate answers provided to the model.

4 Experiment Results and Analysis

We initially trained a series of MILE equipped with PEFT modules using the
original data. Tables 1 to 4 present the accuracy (ACC(%)) of four MILE variants
training with the origin data on the Slake benchmark. ’F’ denotes the freezing of
all parameters within a given module, ’T’ signifies that all parameters are train-
able, and the acronyms ’LoRA’, ’Prefix’, ’IA3’, and ’PTV2’ identify the specific
PEFT methods applied. ’Memory’ represents the GPU memory (GB) required
for training. And ’#Params’ indicates the weight of trainable parameters over
all parameters.

Table 1: Results of MILE-LoRA(origin data).
ViT JTM Dec Rank #Params Memory Opened Closed Gobal

LoRA 4 0.163% 5.19 3.57 50.70 20.34F LoRA LoRA 8 0.325% 5.21 3.57 50.70 20.34
4 0.327% 26.63 48.65 50.70 49.34LoRA LoRA LoRA 8 0.652% 26.75 48.93 50.70 49.57

LoRA 4 38.022% 7.26 47.76 70.70 55.53F T LoRA 8 38.072% 7.45 50.21 70.99 57.18
LoRA 4 24.009% 26.96 68.14 50.70 62.29T LoRA LoRA 8 24.133% 27.29 68.28 50.70 62.38

4 61.887% 27.60 78.52 79.44 78.83T T LoRA 8 61.919% 28.11 78.66 80.56 79.30

The results demonstrate that a fully frozen visual encoder (ViT) within the
VLM significantly hampers the model’s ability to correctly interpret texts and
images, as observed in the MILE-IA3 and MILE-PTV2, where global ACC plum-
mets to 0.57% and 0%, respectively. Conversely, a modest increase in tunable
parameters by 0.16% in MILE-LoRA leads to notable improvements of 45% and
29% in open-ended and global ACC, respectively. When all parameters of the



6 J. Chen et al.

ViT are set to trainable, the global ACC of the four models increases by 42%,
21%, 17%, and 19% compared to when they are completely frozen.

Table 2: Results of MILE-Prefix.

ViT JTM Dec #Params Memory Opened Closed Global
F F Prefix 3.926% 4.62 0 50.7 17.3
F Prefix Prefix 7.556% 4.67 0 50.7 17.3
T Prefix Prefix 29.636% 26.41 41.50 32.95 38.61
T T Prefix 63.354% 27.97 76.82 82.25 78.65

Table 3: Results of MILE-IA3.

ViT JTM Dec #Params Memory Opened Closed Global
F IA3 IA3 0.051% 6.35 0 1.69 0.57
IA3 IA3 IA3 0.061% 23.01 0 50.70 16.98
T IA3 IA3 23.924% 26.83 12.77 28.17 17.92
F T IA3 37.987% 7.52 46.24 50.70 47.74
T T IA3 61.866% 27.90 72.20 47.04 63.77

Table 4: Results of MILE-PTV2.

ViT JTM Dec #Params Memory Opened Closed Global
F PTV2 PTV2 0.102% 4.52 0 0 0
F F PTV2 0.051% 4.57 7.10 0 4.72
T PTV2 PTV2 23.963% 25.41 13.62 29.30 18.87
T T PTV2 61.876% 27.46 74.18 49.86 66.04

(a) ACC of MILE(origin data)

(b) ACC of MILE(instruction-format data)

Fig. 2: ACC of MILE trained with
different data.

On the other hand, in MILE-Prefix and MILE-IA3, when the ViT is frozen,
even converting the JTM encoder from frozen to fully trainable barely improves
global ACC. This underscores the pivotal role of the visual encoder in a VLP
model for downstream task adaptation, where even minimal adjustments via
PEFT can significantly enhance performance.

When the parameters of the ViT are updatable, increasing the proportion
of parameter updates for the JTM encoder can also lead to significant improve-
ments. Notably, in MILE-Prefix, shifting from Prefix-Tuning to full parameter
updates for the JTM encoder boosts global ACC by 40%, with closed-ended ques-
tion ACC surpassing that of the baseline model employing global fine-tuning.
In MILE-IA3 and MILE-PTV2, elevating the update ratio for the JTM encoder
markedly improves open-ended question ACC by 67% and 70%. However, this
comes with the cost of increasing the training parameter ratio to 61% to 64%.

It is also worth mentioning that full parameters updating of both the visual
encoder and JTM encoder, alongside PEFT application to the decoder, can
reduce the parameter count by 40% while maintaining performance on par with
global fine-tuning.

4.1 Performance Differences Among Different PEFT Methods

Although the aforementioned PEFT methods have been compared in their re-
spective papers within the LM domain, our experiments reveal differing efficacies
of them within the medical VLM domain.
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LoRA-Tuning exhibits the most competitive performance in this domain,
effective for PEFT both language modeling Transformers and visual modeling
Transformers. Compared with IA3, when all model parameters are subject to
PEFT, MILE-IA3 consistently answers ’no’ (ACC 50.70%) to all questions. While
MILE-LoRA also responds ’no’ to closed-ended questions, it demonstrates a bet-
ter understanding of the semantic information from images and text, achieving a
48.65% ACC on open-ended questions, outperforming MILE-Prefix, MILE-IA3,
and MILE-PTV2, which have about 20%-30% trainable parameters.

Furthermore, we conducted an ablation study on the rank of the LoRA unit.
As shown in Table 1, within the same tuning paradigm, a doubling of the number
of parameters in the LoRA matrix brings about a minor improvement in model
performance. A LoRA rank of 8 (ViT froze) and LoRA-tuned (rank=4) visual
encoders, adjusting a similar parameter fraction (about 0.32%), differed by 45%
in open-ended questions’ accuracy.

MILE-Prefix also demonstrates promising results. When both the ViT and
the JTM are fully trainable, and the decoder employs PEFT, the performance of
MILE-Prefix is comparable to MILE-LoRA. When the JTM encoder also utilizes
PEFT, MILE-Prefix lags, indicating that simply adding a prefix to vectors does
not effectively promote the alignment of features from different modalities in the
cross-attention layer, consistent with the principle of Prefix-Tuning.

Compared to the baseline model, the performance of MILE-IA3 and MILE-
PTV2 is inferior to MILE-LoRA and MILE-Prefix. Within fundamental VLM,
updating a negligible fraction (less than 0.1%) of the decoder’s parameters sub-
stantially impairs its generative task performance. This impact is markedly less
pronounced in LLMs, underscoring the critical role of the number of parameters
proportionality in tuning efficacy.

(a) Loss of MILE (origin data) (b) Loss of MILE (instruction-format 
data)

(c) Loss of MILE (global+instrucion-
tuning)

Fig. 3: Loss of MILE variants under the training with origin data (a), instruction-
format data (b) and an instruction-tuning MILE after fine-tuning by origin
data (c).

4.2 The Impact of Data on Training Effectiveness

We employed instruction-format image-text pairs to conduct both global fine-
tuning and PEFT of the model but did not parallel the positive effects seen in
LLMs when applied to a basic VLP model. As shown in Table 5, the use of
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instruction-format data during full fine-tuning led to more than 20% decrease
in the global ACC. Moreover, Figure 2a&b shows that the synergy of structure-
level PEFT with data-level instruction-tuning significantly reduced the perfor-
mance of various MILE variants by over 20%, diverging from outcomes with raw
data (more precise data are presented in tables in the Appendix).

This disparity underscores the potential model and task-specific sensitivity of
instruction-format data’s benefits. For basic VLP models, such data application
might not yield the expected advantages.

4.3 Is Instruction-Tuning Ineffective for Basic VLMs?

While LLMs and LVLMs can benefit from instruction-tuning to enhance their
generalization across different types of tasks, this approach may not be effective
for basic VLMs. This is because base VLMs are typically fine-tuned for specific
downstream tasks. Furthermore, instruction-format text inputs provide candi-
date answers to questions (see in Appendix), which do not exist in real-world
scenarios during inference and practical applications of generative models.

As shown in Figure 3a&b, global fine-tuning with instruction-based data
showed lower losses, hinting at an improved task format comprehension but
potentially oversimplifying the difficulty of training tasks, thus diminishing real-
world inferencing efficacy.

However, given that instruction-format data can enhance the model’s un-
derstanding of the target task and result in lower training losses, could it po-
tentially improve a global fine-tuned model that has already converged on the
original data? Figure 3c demonstrates the loss reduction when a converged model
is further trained on instruction-format data, the loss of the converged model
continues to decrease and finally reaches about 4.33 after global fine-tuning. As
shown in Table 5, MILE ultimately achieves 86.7% open-ended ACC, 81.42%
closed-ended ACC, and 83.02% overall ACC, surpassing the baseline model and
demonstrating state-of-the-art performance among generative VLMs.

Table 5: Comparsion with other medical VLMs which have different tuning
paradigms, ’♣’ means global fine-tuning with ordinary data (no instruction-
format) and ’♠’ means instruction-tuning with all parameters updating.
Methods Pretrain

# images
Tuning

paradigm Type of task VQA-RAD SLALKE
CLOSED OPENED OVERALL CLOSED OPENED OVERALL

MTL [5] 87,952 ♣ classification 79.8 69.8 75.8 86.1 80.2 82.5
M3AE [4] 298,000 ♣ classification 83.4 67.2 77 87.8 80.3 83.2
MUMC [14] 387,000 ♣ ranking 84.2 71.5 79.2 - - 84.9
MISS [3] 38,800 ♣ generating 80.35 71.81 76.05 82.91 81.47 82
MILE 38,800 ♠ generating 2.68 45.58 24.22 59.72 68.79 65.75
MILE 38,800 ♣+♠ generating 76.34 73.45 74.89 86.70 81.42 83.02

5 Conclusion

In this paper, we comprehensively investigate whether fine-tuning methods for
LLMs can be applied to the medical multimodal domain, aiming to ease the
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training burden on resource-constrained practitioners. We developed a suite of
MILE models incorporating various fine-tuning strategies atop generative VLP
frameworks, delving into the effects of structural and parametric modifications
on performance. From a series of experiments, we observe that updating the
parameters of the visual encoder is crucial for VLMs. Furthermore, updating
the parameters of the JTM encoder which is responsible for text feature extrac-
tion and multimodal feature fusion can significantly enhance model performance.
Through a comparison of different PEFT methods, we find that LoRA-Tuning
and Prefix-Tuning exhibit the best tuning effects, achieving comparable perfor-
mance to global fine-tuning models while reducing training costs by 40%.

Additionally, we explore the impact of data-level fine-tuning, specifically
instruction-tuning, on model performance. Although directly fine-tuning with
instruction-format data simplifies the training task, it leads to suboptimal per-
formance for basic VLMs in practical tasks. Nonetheless, instruction-tuning on
top of models already optimized on original datasets demonstrated notable per-
formance gains. We hope that our work can inspire researchers in the medical
field who aim to reduce the training costs of multimodal models and promote
the application of VLMs in the medical domain.
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