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Abstract. Dental prosthesis is important in designing artificial replace-
ments to restore the function and appearance of teeth. However, design-
ing a patient-specific dental prosthesis is still labor-intensive and depends
on dental professionals with knowledge of oral anatomy and their expe-
rience. Also, the initial tooth template for designing dental crowns is
not personalized. In this paper, we propose a novel point-to-mesh gen-
eration transformer (DCrownFormer) to directly and efficiently generate
dental crown meshes from point inputs of 3D scans of antagonist and
preparation teeth. Specifically, to learn morphological relationships be-
tween a point input and generated points of a dental crown, we introduce
a morphology-aware cross-attention module (MCAM) in a transformer
decoder and curvature-penalty loss (CPL). Furthermore, we adopt Dif-
ferentiable Poisson surface reconstruction for mesh reconstruction from
generated points and normals of a dental crown by directly optimizing an
indicator function using mesh reconstruction loss (MRL). Experimental
results demonstrate the superiority of DCrwonFormer compared with
other methods, by improving morphological details of occlusal surfaces
such as dental grooves and cusps. We further validate the effectiveness of
MCAM, MRL, and significant benefits of CPL through ablation studies.
The code is available at https://github.com/suyang93/DCrownFormer/.
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Fig. 1. (a) A 3D scan of antagonist and preparation teeth (grey) along with dental
crown (red). The orange dashed line is a region of interest for preparation tooth. (b)
Illustration of dental groove and cusp and its normalized absolute curvature map.

1 Introduction

Dental prosthodontics is a branch of dentistry that uses artificial replacements
to restore the function and appearance of teeth [1, 2]. When a tooth is damaged
or lost due to tooth decay, gum disease, or an accident, a dental prosthesis is
designed, fabricated, and implanted to consider the oral anatomy and aesthetics
of the tooth [3]. These dental prostheses can be dental crowns, bridges, dentures,
or implants, depending on the patient. In general, dental prostheses have similar
strength and durability to natural teeth and provide functional and aesthetic
help to patients [4].

Dental computer-aided design/computer-aided manufacturing (CAD/CAM)
systems led to a significant advancement in digital dentistry, offering a dental
solution based on a tooth template for designing dental restorations, including
crowns, veneers, bridges, inlays, and onlays. [5–7]. These systems streamline the
design and manufacturing process, allowing for accurate and patient-specific den-
tal prostheses. Although the CAD/CAM systems lead to many advantages in dig-
ital dentistry, designing a patient-specific dental prosthesis is still labor-intensive
and depends on dental professionals with knowledge of oral anatomy and CAD
skills [8–10]. Also, the initial tooth template for designing dental restorations is
not personalized. It is still time-consuming to fine-tune the position of dental
prosthesis taking dental occlusion, ensuring both functionality and aesthetics,
and considering harmonious integration with adjacent teeth [9, 10]. Therefore,
automatic methods for personalized dental crown design are required to alleviate
the workload of a dentist and reduce variability in prosthetic quality.

Recently, artificial intelligence has been used to create dental prostheses in
digital dentistry [11, 12, 17]. Farook et al. show that 3D-CNN can be used to gen-
erate a partial dental crown. However, 3D-CNN has the limitations of low verifi-
cation accuracy and precision. Also, a personalizing process is necessary for the
use of the standard tooth template [11]. Sukun et al. propose a dual discriminator
adversarial learning approach for occlusal surface reconstruction [12]. A depth
map was used in this research, however, which makes generating shaded areas
difficult. In addition, because antagonistic teeth were not considered, it was not
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possible to personalize occlusal surfaces. Hosseinimanesh et al. combined a point
completion network [17] with a differentiable surface reconstruction method [19]
to generate mesh dental prostheses directly from the point cloud surrounding a
prepared tooth. Nevertheless, these methods have some limitations in generating
details of a dental mesh including occlusal surfaces such as dental grooves (pits
and fissures) and cusps (occlusal or incisal eminences) and the relationship to
antagonist teeth, proximal teeth, and a margin line of the preparation tooth.

In this paper, we propose a novel point-to-mesh generation transformer named
DCrownFormer to directly and efficiently generate dental crown meshes from
point inputs of 3D scans of antagonist and preparation teeth. DCrownFormer
has four main components as follows: (1) Point-to-mesh generation trans-
former. To directly generate dental crown meshes from point inputs, we propose
a point-to-mesh generation transformer that can capture geometric local-global
features of point inputs at the transformer encoder and directly reconstruct fine
details of a dental crown mesh at the transformer decoder. (2) Morphology-
aware cross-attention module (MCAM). We introduce MCAM in a trans-
former decoder which captures morphological relationships such as dental shapes,
scales, and occlusion between a point input and generated points of a dental
crown. Point features from a transformer encoder are fed into an MCAM via a
skip connection, and a cross-attention layer at each level of an MCAM learns the
morphological relationships between encoded point features and decoded point
features. (3) Curvature-penalty loss (CPL). We propose CPL to constrain
morphological features and details of dental grooves and cusps that affect the
functionality, durability, and aesthetics of a dental crown by weighting normal-
ized absolute curvatures at each generated point during the network training. (4)
Mesh reconstruction loss (MRL). Motivated by Peng et al. [19], we adopt
the Differentiable Poisson surface reconstruction method (DPSR) for mesh re-
construction from generated points and normals of a dental crown and improve
the mesh quality of a generated dental crown by directly optimizing an indicator
function using MRL without any additional mesh completion layers or models.

2 Method

The overview of our DCrownFormer is shown in Fig. 2. Given an antagonist and
preparation tooth scan, we perform uniform point sampling to take a point input
Pi of size N × 3, where N denotes the number of points. Then a point input Pi is
fed to the encoder of DCrownFormer to extract a global feature vector G of size
1 × 2k, which captures geometric local-global features of the point input. The
decoder of DCrownFormer takes the global feature vector G to generate points
Pp and normals Np of a dental crown, where Pp and Np has a size N × 3. After
generating points Pp and normals Np of a dental crown, we use DPSR [19] to
directly reconstruct the crown mesh from the points Pp and normals Np.
Point Feature Encoding. The encoder of DCrownFormer extracts the geo-
metric features in a point input as two global feature vectors G1 of size 1 × k
and G2 of size 1× 2k, where k denotes an embedding size and set as k = 256. It
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Fig. 2. Illustration of our DCrownFormer architecture. DCrownFormer takes a point
input and generates the dental crown mesh by solving the estimated indicator grid.

learns embedding vectors from the antagonist and preparation tooth points to
spaces of crown mesh shapes. Specifically, the encoder consists of an MLP block,
point cloud transformers (PCT), and point-wise max-pooling (MAP). The MLP
block consisting of a shared multi-layer perception layer, Batch normalization
(BN), and Rectified Linear Unit (ReLU) activation takes a point input Pi where
each point has a 3D coordinate (x, y, z) and extracts the point features f0 size
of N × k. Then, PCT consisting of four multi-head self-attention modules [13] is
used to capture both short-range and long-range relationships between the point
features f0 and outputs the refined point features f1. A first global feature vector
G1 is obtained by MAP, where Gj

1 = max{i=1,...,N}{f ij1 } for j = 1, ..., k. The
global feature vector G1 expanded to the size of N × k is concatenated with the
point features f1, and those are fed to the second PCT. The second PCT outputs
the fine-grained point features f2 of size N×2k and those are projected by MAP
to obtain the second global feature vector G2 of size 1 × 2k. We use four-head
self-attention and embedding dimensions of 256 and 512 for each PCT.

Point-to-Mesh Decoding. To directly reconstruct dental crown mesh using
DPSR, the decoder of DCrownFormer generates points Pp and corresponding
normals Np from the expanded global feature vector G̃2 of size N × 2k. In our
decoder, we adopt MCAM with multi-head cross-attention modules to learn
morphological relationships for a balanced dental occlusion between point input
and output in a coarse-to-fine manner. The decoder consists of intermediate
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supervision (IMS), MCAM, an MLP block, and a dual output branch (DOB).
IMS has an MLP layer to generate coarse points Pc of size N × 3 from the point
features f2. In our MCAM, Q is obtained from the concatenated decoded point
features gn and coarse points Pc. K and V are obtained from the concatenated
skip connected point features fn and point input Pi. Our MCAM is defined as:

Q = WQ
i · MLP([gn,Pc]), (1)

K,V = WK
i · MLP([fn,Pi]), WV

i · MLP([fn,Pi]), (2)

where WQ
i , WK

i , and WV
i are shared learnable linear layers [13], [·] denotes

a channel-wise concatenation operation, and MLP is an MLP layer with the
embedding dimensions of 256 and 512 at each level of the layer. fn and gn is skip
connected point features from PCT in the encoded and decoded point features
at the same level of layer n, respectively. To learn morphological relationships
between encoded and decoded point features, we use a cross-attention head Hi

between Q and both K and V by the matrix dot-product operation as follows:

Hi(Q,K, V ) = Softmax(
Q ·KT
√
dk

) · V, (3)

where dk is the dimension of the point features. The multi-head cross-attention is
defined as H(Q,K, V ) = WO · [Hi, ...,HM ]Mi=1, where WO is a shared learnable
linear layer, [·] denotes a concatenation operation, and M is the number of
attention head (M = 4 in our work). After MCAM, the point features are fed
to an MLP block that has the same shape as that of the encoder. Then, we use
DOB to generate points Pp and normals Np of a dental crown from the final
point features g0, where each branch of DOB has a ReLU and MLP layer.
Curvature-penalty loss. In convex and concave regions with high curvatures,
commonly observed in grooves and cusps in a dental crown as shown in Fig.
1(b), Chamfer distance loss (CDL) can lead to a loss of fine details and an over-
smoothed out by weighting all points equally [20]. Therefore, we introduce a
curvature-penalty CDL called Curvature-penalty loss (CPL) which improves the
reconstruction of an occlusal surface and a margin line by assigning normalized
absolute curvature weights |κ| of size N × 1 to corresponding points as follows:

CPL(Pp,Pg) =
1

| Pp |
∑
x∈Pp

eλ|κ(y)| min
y∈Pg

∥x− y∥22+

1

| Pg |
∑
y∈Pg

eλ|κ(y)| min
x∈Pp

∥x− y∥22,
(4)

where Pp and Pg are a point output and point ground truth, respectively. λ
is a constant value to control the scale of curvature weights. It is noteworthy
that in the case of λ = 0, CPL simplifies to be the same as CDL. |κ(y)| is the
normalized absolute discrete mean curvature from a point ground truth Pg [21,
22]. To normalize the absolute discrete mean curvatures, we empirically set the
bound of curvature as |κ(y)| = min{|κ(y)|, κmax}, where κmax is set as 5.
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Fig. 3. Visual comparison of different methods for dental crown generation. Color map
denotes surface distance error. 3D printing example is given in supplementary Fig. S2.

Mesh reconstruction loss. During training, we minimize MRL consisting of
the Mean Square Error (MSE) between the estimated indicator grid Rp and the
indicator grid of ground truth Rg, each obtains using the DPSR [19] from each
set of points and normals. The MRL is defined as:

MRL(Rp,Rg) = ∥Rp −Rg∥2, (5)

where Rp and Rg is calculated by Rp = DPSR(Pp, Np) and Rg = DPSR(Pg,
Ng). Finally, we minimize the total loss Ltotal of CPL and MRL as follows:

Ltotal = CPL(Pc,Pg) + CPL(Pp,Pg) +MRL(Rp,Rg). (6)

On the inference stage, we estimate the indicator gird Rp from generated
points Pp and normals Np using DPSR and apply Marching cube algorithm [23]
to reconstruct dental crown mesh by solving estimated indicator grid Rp.

3 Experiments

3.1 Datasets and Implementation Details

Dataset. We collect a total of 2317 dental plaster cast scans of the antagonist
and preparation teeth including mandibular and maxillary molars as shown in
Fig. 1(a), using a desktop scanner (D2000, 3Shape, Copenhagen, Denmark). The
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Table 1. Performance comparison of DCrownFormer with existing point completion
networks combined with SAP. Performance comparison on each tooth is given in the
supplementary Table S1.

Methods CD(↓) F-score(↑) NC(↑) MAE(↓) R2(↑) SDE(↓)
PCN+SAP 18.96±4.38 0.873±0.093 0.761±0.034 4.95±1.80 0.416±0.213 10.37±3.50
GRNet+SAP 17.56±4.05 0.912±0.075 0.629±0.037 5.91±1.81 0.450±0.123 10.83±2.42
TopNet+SAP 18.72±4.84 0.881±0.096 0.850±0.035 2.63±0.89 0.526±0.193 8.65±2.76
PointTr+SAP 40.39±25.71 0.605±0.321 0.756±0.070 20.24±62.67 0.351±0.685 17.35±14.40
DCrownFormer 15.06±3.29 0.953±0.062 0.798±0.047 1.84±0.53 0.694±0.163 6.47±2.15

Table 2. Ablation study results of different components in DCrownFormer.

(a) Ablation study on each component
Components CD(↓) F-score(↑) NC(↑) MAE(↓) R2(↑) SDE(↓)
Baseline 15.26±3.18 0.951±0.059 0.775±0.049 2.00±0.64 0.670±0.170 6.65±2.10
Baseline w/ SAM 15.20±3.22 0.952±0.060 0.809±0.046 1.72±0.51 0.681±0.169 6.57±2.14
Baseline w/ MCAM (Ours) 15.06±3.29 0.953±0.062 0.798±0.047 1.84±0.53 0.694±0.163 6.47±2.15
(b) Ablation study on MRL
Ours w/o MRL + SAP 15.38±3.34 0.946±0.065 0.810±0.034 4.74±3.52 0.546±0.199 8.03±2.61
Ours w/ MRL 15.06±3.29 0.953±0.062 0.798±0.047 1.84±0.53 0.694±0.163 6.47±2.15

dental crowns corresponding to dental plaster cast scans are designed by a dentist
on CAD/CAM dental software (TRIOS, 3Shape, Copenhagen, Denmark). The
number of 3D scan data in training, validation, and test datasets was randomly
split into 1393, 464, and 460, respectively (Supplementary Fig. S1).
Pre-processing. We extract a region of interest (ROI) mesh cropped to a size
of 1.5 cm3 centered at the preparation tooth which was sufficiently large to
include three opposing and two adjacent teeth. After that, a point input was
obtained by uniform sampling of 2048 points from an extracted ROI mesh. To
generate the ground truth of the indicator grid from a dental crown mesh, we
uniformly sample 2048 points and corresponding normals and curvatures from a
dental crown mesh and use DPSR with an indicator grid resolution of 1283 with
a Gaussian smoothing parameter of 2 [19]. A point input and the corresponding
point ground truth are normalized by shifting the centroid of the point input to
the origin and scaling it by the farthest distance from the origin [17].
Traning setup. All models were trained by Adam optimizer for 2000 epochs
with an initial learning rate of 10−4. We used a batch size of 16 and an NVIDIA
GeForce TITAN X GPU with 24 GB RAM. All models were implemented in
Python3 using the PyTorch framework and run on the same computing environ-
ments and with the training setup to guarantee a fair comparison.
Evaluation Metrics. We use the Chamfer distance (CD) and F-score with
the default threshold of 0.1% to measure the similarity between the predicted
and ground truth points [19]. To measure the similarity between predicted and
ground truth normals, we measure Normal Consistency (NC) [19]. We also used
mean absolute error (MAE) and the coefficient of determination (R2) to evaluate
the similarity between the estimated and ground truth indicator grids. Surface
distance error (SDE) is used to evaluate the distance error between the generated
and ground truth meshes. CD, MAE, and SDE are displayed by multiplying 103.
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Fig. 4. (a) Point attention maps of Baseline with SAM (BL+SAM) and our Baseline
with MCAM (BL+MCAM). (b) Visual comparison of CDL (λ = 0.0) and CPL (λ =
1.0). (c) Ablation study results on the effectiveness of scale parameter λ in CPL.

3.2 Experimental Results

Comparison with other methods. We compare DCrownFormer with the four
point completion networks [14, 16, 15, 17] integrated with the Shape As Points
model (SAP) [19] for dental crown reconstruction. Compared with other meth-
ods, our DCrownFormer achieves the best performance in all metrics except for
NC (Table 1). Specifically, our DCrownFormer surpasses TopNet+SAP with the
second-highest performance by obtaining 15.06±3.29, 0.953±0.062, 1.84±0.53,
0.694±0.163, and 6.47±2.15 for CD, F-score, MAE, R2, and SDE, respectively.
As shown in Fig.3, the results of DCrownFormer are relatively close to the ground
truth meshes of dental crowns, especially for the morphological structure of the
occlusal surface such as the dental grooves and cusps. Compared with the pre-
vious state-of-the-art method [18], DCrownFormer shows superior performance
in terms of the average CD and F-score.
Component analysis. We perform ablation studies to verify the effectiveness of
each component and MRL in DCrownFormer. First, we compare the effectiveness
of each component including (1) the Baseline (DCrownFormer without MCAM),
(2) the Baseline with a self-attention module (SAM), and (3) the Baseline with
MCAM (DCrownFormer). In Table 2(a), our DCrownFormer outperforms the
Baseline and the Baseline with SAM. Especially, point attention maps of MCAM
are more focused on input points related to the morphology of a dental crown
such as the antagonist and proximal teeth, and a margin line than those of SAM
as shown in Fig. 4(a). Point attention maps are visualized as point-wise average
attention score maps in each last transformer. In Table 2(b), DCrownFormer with
MRL outperforms that with SAP by directly optimizing an indicator function
without additional mesh completion layers or models.
Effectiveness of scale parameter λ. We evaluate the effectiveness of scale
parameter λ of CPL in DCrownFormer as shown in Fig. 4(c). In DCrownFormer,
CPL (λ = 1.0) outperforms CDL (λ = 0.0) in terms of CD and SDE. When
increasing a scale parameter λ from 0.5 to 1.0, the generation performance is
higher than that of CDL. While, a further weight on a scale parameter λ (e.g.,
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λ > 1.0), the performance decreases. This result suggests that the scale param-
eter λ in the proposed CPL needs to be carefully controlled. In Fig. 4(b), we
observe that the CPL shows a lower SDE than CDL in DCrownFormer.

4 Conclusion

In this paper, we present a novel point-to-mesh generation transformer named
DCrownFormer to directly and efficiently generate dental crown meshes from
point inputs of 3D scan data of antagonist and preparation teeth. Our exper-
imental results demonstrate the effectiveness of MCAM and MRL as well as
the significant benefits of CPL. Our DCrownFormer also shows superior perfor-
mance compared to other methods and the previous state-of-the-art method. In
future works, We plan to extend our method to directly generate dental meshes
of inlay, outlay, and bridges from 3D tooth scan data.
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