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Abstract. Prediction of genetic biomarkers, e.g., microsatellite insta-
bility and BRAF in colorectal cancer is crucial for clinical decision mak-
ing. In this paper, we propose a whole slide image (WSI) based ge-
netic biomarker prediction method via prompting techniques. Our work
aims at addressing the following challenges: (1) extracting foreground
instances related to genetic biomarkers from gigapixel WSIs, and (2) the
interaction among the fine-grained pathological components in WSIs.
Specifically, we leverage large language models to generate medical prompts
that serve as prior knowledge in extracting instances associated with ge-
netic biomarkers. We adopt a coarse-to-fine approach to mine biomarker
information within the tumor microenvironment. This involves extract-
ing instances related to genetic biomarkers using coarse medical prior
knowledge, grouping pathology instances into fine-grained pathological
components and mining their interactions. Experimental results on two
colorectal cancer datasets show the superiority of our method, achiev-
ing 91.49% in AUC for MSI classification. The analysis further shows
the clinical interpretability of our method. Code is publicly available at
https://github.com/DeepMed-Lab-ECNU/PromptBio.

Keywords: Genetic biomarker prediction · Whole slide image · Text
prompt.

1 Introduction

Colorectal cancer (CRC) is the second leading cause of cancer-related deaths
worldwide [25]. The evaluation of genetic biomarkers is crucial for CRC di-
agnosis and prognosis, such as microsatellite instability (MSI) and mutations
in the BRAF, since these biomarkers can identify CRC patients with different
treatment response and prognosis [13, 6, 7]. MSI has been officially adopted as
global classification standards for the diagnosis and treatment of CRC in the
National Comprehensive Cancer Network guidelines [1]. However, the method of
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testing genetic biomarkers is time-consuming and expensive, such as immuno-
histochemistry, polymerase chain reaction and next-generation-sequencing [8].
Due to diagnostic needs, the pathology whole slide images (WSIs) stained with
hematoxylin and eosin (H&E) are routinely available for all CRC patients and
previous works [12, 24] suggested that genetic alterations are expressed in digi-
tal pathology WSIs. Therefore, automatically predicting genetic biomakers from
WSIs is feasible and highly demanded in clinical practice.

Genetic biomarker prediction based on gigapixel WSIs can be cast as a multi-
ple instance learning (MIL) problem, where WSIs are bags and patches cropped
fromWSIs are instances, aiming to predict a bag label. However, learning genetic
biomarker representations based on bags is challenging, because it’s hard to ex-
tract foreground instances related to genetic biomarkers from a WSI. Moreover,
the tumor microenvironment is a complex network. Various pathological compo-
nent interactions exist between immune cells and non-cellular components such
as the extracellular matrix, exosomes and interleukins [3], which may be relevant
to genetic biomarkers. Therefore, how to extract foreground instances related to
genetic biomarkers and mine the interaction among pathological components in
the the tumor microenvironment is crucial for genetic biomarker prediction.

Specifically, to our knowledge, most WSI based genetic biomarker predic-
tion methods, such as MOMA [27] and MSIntuit [22], indiscriminately input
all instances into the network, which bring a large number of irrelevant in-
stances. Many other WSI classification methods can be extended to predict
genetic biomarkers. Among these, some methods have implemented learnable
or non-learnable instance selection. For example, VIBFT [16] introduces a vari-
ational information bottleneck to find the minimal sufficient statistics of WSIs,
and MILBooster [21] proposes a bag filter that increases the positive instance
ratio of positive bags using K-means algorithm. But these selection methods
lack interpretable medical justification. Even with a reduced number of in-
stances, they may still lose key tissue regions relevant to genetic biomarker.
Moreover, most methods [11, 14] treat pathology instances as independent en-
tities and overlook their interaction. Recent studies [23, 15] have used Vision
Transformer frameworks to model the relationships between instances, but they
neglect the interaction among different pathological components. HGT [9] at-
tempts to explore the interaction among different pathological components in
WSIs, but their construction of pathological components relies on superpixel
rather than actual pathological component distribution. TOP [20] models differ-
ent prototypes guided by pathology language prior knowledge and the pathology
language prior knowledge is flexible and adaptable, but it aggregates instance
features into a bag feature through a simple weighting method without exploring
the interaction among different prototypes.

To this end, we propose a task-specific framework dubbed Prompting whole
slide image-based genetic Biomarker prediction (PromptBio), consisting of three
modules, which leverages the capabilities of the large language model (LLM) to
generate pathology text prompts, and uses biomarker-associated medical prior
knowledge to guide the pathological component extraction and feature fusion.
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Fig. 1. Illustration of PromptBio model. The overall framework consists of three parts:
1) coarse-grained pathological instance selection module, 2) prompt-guided fine-grained
pathological component grouping module, 3) fine-grained pathological component in-
teraction mining module. Given a dataset D consisting of N pathology WSIs, our
PromptBio first performs coarse-grained pathological instance selection to extract
the instances belonging to cancer-associated stroma. Then our PromptBio performs
fine-grained pathological component grouping on extracted instances. The grouping is
guided by pathology text prompts of cancer-associated stroma with MSI. Finally, our
PromptBio performs fine-grained pathological component interaction mining.

Pathological components of diverse microenvironments range from fine-grained
(e.g., lymphocyte infiltration, inflammatory reaction, etc.) to coarse-grained
(e.g., cancer-associated stroma, epithelium tissue, etc.). Among various coarse-
grained pathological components, cancer-associated stroma is proven as the key
contributor to the tumor microenvironment [5, 4] and is highly associated with
consensus molecular subtypes [2]. We regard cancer-associated stroma as the
tissue of our interest and use it to discard irrelevant information in a WSI.
Thus, we first propose a coarse-grained pathological instance selection module
to extract foreground instances belonging to cancer-associated stroma from a
gigapixel WSI. This process is guided by coarse-grained medical prompts. Next,
we focus on learning the distribution and interaction among fine-grained patho-
logical components in cancer-associated stroma, to extract comprehensive and
in-depth biomarker-associated features. Two modules, i.e., fine-grained patho-
logical component grouping and interaction mining, are proposed. In the group-
ing module, we prompt LLM to generate biomarker-associated descriptions for
fine-grained pathological components, which identify multiple semantic types
from the WSIs. We design a grouping strategy to aggregate instances of each
type and gather their distribution. Prompting techniques ensure the accuracy of
the tumor microenvironment modeling. Furthermore, the hierarchical contextual
interaction of intra- and inter-pathological components are extracted and fused
via our interaction mining module, enhancing the interpretability of the tumor
microenvironment modeling. Extensive experiments show our method outper-
forms all state-of-the-arts by a large margin, with over 5% improvement in AUC
for CRC MSI prediction on TCGA dataset. Additionally, our method shows
clinical interpretability, providing potential for future clinical applications.
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2 Method

Given a dataset D consisting of N pathology WSIs, pathological components of
diverse microenvironments in WSIs range from fine-grained (e.g., lymphocyte
infiltration, etc.) to coarse-grained (cancer-associated stroma, etc.). Prompt-
ing Whole Slice Image Based Genetic Biomarker Prediction (PromptBio) first
performs coarse-grained pathological instance selection based on medical prior
knowledge to extract the instances belonging to cancer-associated stroma. Con-
sidering that the tumor microenvironment is a complex network of various patho-
logical components, PromptBio performs fine-grained pathological component
grouping on extracted instances. The grouping is guided by pathology text
prompts of cancer-associated stroma with MSI. Finally, PromptBio performs
fine-grained pathological component interaction mining. As shown in Fig.1, the
overall framework consists of three modules: 1) coarse-grained pathological in-
stance selection (Sec. 2.1), 2) prompt-guided fine-grained pathological compo-
nent grouping (Sec. 2.2) and 3) fine-grained pathological component interaction
mining (Sec. 2.3). Next, we will introduce each part in detail.

2.1 Coarse-grained Pathological Instance Selection

To discard abundant irrelevant information in a WSI, we select the instances
related to genetic biomarkers based on medical prior knowledge. Among various
coarse-grained pathological components, cancer-associated stroma is proven as
the key contributor to the tumor microenvironment [5, 4, 2]. We regard cancer-
associated stroma as the tissue of our interest and use it to discard abundant
irrelevant information in aWSI. We utilize PLIP [10] for coarse-grained patholog-
ical instance classification of CRC WSIs. PLIP is a large vision-language model
(VLM) for pathology image analysis that allows zero-shot classification of tissues
on WSIs, where the text encoder yields text embeddings of medical descriptions.
An H&E-stained WSI contains a large number of irrelevant background regions,
and we use the image preprocessing algorithm in CLAM [18] to detect the tis-
sue regions in the WSI and crop the tissue regions into non-overlapping 512 ×
512 pixel-sized patches. Then we input the text “an H&E image of {keywords}”
into the frozen text encoder of PLIP and input the instances of the WSIs into
the image encoder of PLIP. The keywords correspond to nine tissue classes [10]
including cancer-associated stroma. Finally, we extract the instances belonging
to cancer-associated stroma.

2.2 Prompt-Guided Fine-grained Pathological Component
Grouping

To learn the distribution of fine-grained pathological components in cancer-
associated stroma and extract more comprehensive and in-depth biomarker-
associated features, we group selected instances into fine-grained pathological
components based on pathology text prompts. We use the prompt template “If
a colorectal cancer patient is in an MSI (Microsatellite Instability) status, what
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are the characteristics of the cancer-associated stroma areas in the WSIs may ex-
hibit?” for guiding GPT-4 to generate the pathology descriptions. The generated
descriptions include four types: lymphocyte infiltration, inflammatory reaction,
irregular tumor infiltration border, and atypical lymphocyte infiltration. Each
type has a specific description. We input the four pathology descriptions into
the text encoder of PLIP to obtain the text embeddings T ∈ R4×d. After patch
selection, we follow the method in IBMIL [17] to extract the instance features
and then use a fully connected layer to map the instance features to d dimensions
I ∈ Rn×d, where n is the number of instances selected in each bag. We compute
the cosine similarity between the instance features and each text embedding:

Wi(I) = sim(I,Ti
⊤), i = 1, 2, 3, 4, (1)

where sim(· , ·) refers to cosine similarity, Ti means the ith text embedding of
the four components and Wi(I) ∈ Rn×1 .

Then we select the top-k image features for each pathological component
based on similarity ranking, where k = n · β and β is the selection ratio. In this
way, we obtain four fine-grained pathological components Ci ∈ Rk×d and corre-
sponding instance features Cij ∈ R1×d, where Ci means the ith component in
the four components with pathology semantics. After grouping, many irrelevant
instances are reduced. Ci is computed by:

Ci = Φ (Wi (I) , k) , i = 1, 2, 3, 4, (2)

where Φ(Wi(I), k) refers to the k out of n instances in I that maximize Wi (I).

2.3 Fine-grained Pathological Component Interaction Mining

To mine the interaction among fine-grained pathological components, we sep-
arately input the instance features of each pathological component into the
transformer layer to model the interaction of each instance within a pathological
component, and separately aggregate the instance features of each pathological
component. The feature Cmean

i ∈ R1×d of the ith pathological component is:

Cmean
i =

1

k

 k∑
j

Cij

 , i = 1, 2, 3, 4. (3)

Then, we concatenate component features Cmean = Concat(Cmean
1 ,Cmean

2 ,Cmean
3 ,

Cmean
4 ). A class token CLS ∈ R1×d is concatenated with Cmean ∈ R4×d. The

concatenated feature is further fed into the next transformer layer to mine the
interaction among pathological components. We use a Multi-Layer Perceptron
(MLP) head to map the output class token CLS′ ∈ R1×d to the final class pre-
dictions P = softmax

(
MLP

(
CLS′)). So far, we design a simple yet effective

method to achieve the complex biomarker prediction task.
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3 Experiments

3.1 Experimental Setup

Datasets We verify the effectiveness of our method on The Caner Genome Atlas
(TCGA) CRC dataset and The Clinical Proteomic Tumor Analysis Consortium
(CPTAC) CRC dataset, both containing two CRC subtypes, i.e., Microsatellite
Stable (MSS) and Microsatellite Instability (MSI) and TCGA also contains an-
other two CRC subtypes, i.e., BRAF mutation and non-BRAF mutation. We
use the image preprocessing algorithm in CLAM [18] to detect the tissue re-
gions in WSIs and crop the tissue regions into non-overlapping 512 × 512 pixel-
sized patches at 20× magnification. Due to significant staining variations in the
TCGA dataset, we employ the color normalization proposed by Macenko et al.
[19]. Among 482 WSIs in TCGA, 420 of them belong to MSS and 62 are MSI,
and 429 of them belong to BRAF mutation and 53 are non-BRAF mutation. We
randomly split the TCGA dataset into training and testing sets in a 3:1 ratio,
with 10% of the training set further split into a validation set. Among 105 WSIs
in CPTAC, 81 of them belong to MSS and 24 cases are MSI. We randomly split
the CPTAC dataset into training, validation, and test sets in a 3:1:1 ratio.

Implementation Details During training, we evaluate the model on the vali-
dation set after every epoch, and save the parameters when it performs the best.
Adam is used as our optimizer and the learning rate is 5×10-5 with learning rate
annealing. Binary Cross Entropy loss is used as our loss function. The maximum
number of training epoch is 32. At last, we measure the performance on the
test set. We report the area under the curve (AUC) scores. All experiments are
conducted on a single NVIDIA GeForce RTX 3090.

3.2 Comparison between PromptBio and Other Methods

We compare PromptBio with the current state-of-the-art deep MIL models. As
shown in Table 1, our proposed PromptBio significantly outperforms all the
compared MIL baselines in AUC. In particular, e.g., over 5% higher than the
second best method TOP* [20] and the third best method DSMIL [14] in TCGA
MSI classification. Without pathology text prompts, DSMIL [14] retains a large
number of irrelevant instances, making it challenging to learn genetic biomarker
representations. While our PromptBio performs fine-grained pathological com-
ponent grouping based on pathology text prompts, which effectively extracts
instances more related to genetic biomarkers. Though TOP* [20] models differ-
ent pathlogical components guided by pathology language prior knowledge, it
neglects the interactions among different components.

We further visualize the attention of each patch in pathology images with
MSI or MSS cancer and the distribution of pathological components. In Fig. 2
(a), we find that in the pathology image with MSI cancer, large regions receive
high attention. The selected patches of inflammatory response and lymphatic
infiltration respectively show the accumulation of neutrophils and lymphocytes.
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Table 1. AUC comparison on the TCGA dataset and CPTAC dataset. * denotes that
we utilize the framework of the method for our implementation. The best results are
marked in bold. Improvements compared with the second best results are highlighted.

Method TCGA(MSI) TCGA(BRAF) CPTAC(MSI)
ABMIL [11] 0.8419 0.7115 0.8000
DSMIL [14] 0.8629 0.7310 0.8250
CLAM-SB [18] 0.8375 0.7522 0.8750
CLAM-MB [18] 0.8432 0.6373 0.8375
TransMIL [23] 0.8571 0.6708 0.8875
DTFD [28] 0.8502 0.7467 0.8875
MHIM-MIL(TransMIL) [26] 0.7720 0.6840 0.8750
TOP* [20] 0.8632 0.7176 0.8875
PromptBio 0.9149↑5.17 0.8025↑5.02 0.9125↑2.50

While in the pathology image with MSS cancer, regions receiving high atten-
tion are much smaller and there are few high-similarity pathology patches of
the four conponents. This indicates that prompt-guided fine-grained pathologi-
cal component grouping can ensure the accuracy of the tumor microenvironment
modeling and enhance clinical interpretability. Fig. 2 (c) shows the feature mix-
tureness of bag representations on testing set. Compared with other methods,
our PromptBio yields more discriminative representations.

3.3 Ablation Study

Table 2 summarizes the results of ablation study. We evaluate the effectiveness
of the proposed modules. Without prompt-guided fine-grained grouping module,
the performance drops, e.g., from 91.49% to 89.65% in TCGA MSI classification.
Without coarse-grained instance selection, the performance also decreases. These
indicate that extracted instances based on medical prior knowledge prompting
are more related to genetic biomarkers and they can better reflect the tumor
microenvironment, while irrelevant pathology instances impeding the learning
process of the model. A performance drop without fine-grained pathological com-
ponent interaction mining module can be observed, e.g., from 91.49% to 85.97%
in TCGA MSI classification, which shows the importance of exploring the inter-
action among different pathological components in the tumor microenvironment.
Replacing our prompt-guided fine-grained grouping module by K-means cluster-
ing algorithm leads to an obvious performance drop. This provides evidence for
the effectiveness of the pathology text prompting strategy, enabling a robust
modeling of the actual distribution of pathological components. Furthermore,
to show results are not sensitive w.r.t. GPT-4, we change the seed of inference
parameters in GPT-4. Though fine-grained text prompt slightly differs, we can
still observe similar results (e.g., 91.56% vs 91.49% for MSI classification).

Fig. 3 shows performance changes by varying the selection ratio β. It can
be seen that the performance is not sensitive within the range of [0.2,0.4]. The
model’s performance does not always increase as β increases, as a larger selection
ratio may result in the retention of a large number of irrelevant instances. This
observation demonstrates the effectiveness of our prompt-based grouping strat-
egy in extracting instances that are more closely related to genetic biomarkers.
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Fig. 2. Attention and t-SNE visualizations. For (a) MSI cancer and (b) MSS cancer,
we show attention about contribution of each patch in a pathology image to the class
token, and visualization of similarity between each patch and pathological components.
“Lym.”, “Infla.”,“Aty.” and “Irre.” respectively refer to “lymphatic infiltration”, “in-
flammatory response”, atypical lymphatic infiltration” and “irregular tumor infiltration
boundaries”. (c) t-SNE visualization of bag representations in different methods.

Fig. 3. Performance changes by varying the selection ratio β on TCGA MSI dataset.

4 Conclusion

In this paper, we propose a genetic biomarker prediction method via prompting
techniques. We first extract instances related to genetic biomarkers based on
medical prior knowledge. Then, guided by pathology text prompts, we group
pathology instances from WSIs into fine-grained pathological components and
mine their interaction, which enhances clinical interpretability. Experimental
results on two CRC cohorts show our model achieves much better performance
than other state-of-the-art methods.
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Table 2. Ablation study on TCGA MSI classification, TCGA BRAF classification
and CPTAC MSI classification. AUC is reported. Selection, PGG and PCIM denote
our coarse-grained instance Selection module, Prompt-Guided fine-grained Grouping
module and fine-grained Pathological Component Interaction Mining module, respec-
tively. “K-mean” means replacing PGG with K-means algorithm. “△” means we change
the seed of inference parameters in GPT-4 to generate component descriptions.

Selection PGG PCIM TCGA(MSI) TCGA(BRAF) CPTAC(MSI)
✓ 0.8965 0.7310 0.8000

✓ ✓ 0.8902 0.7656 0.8875
✓ ✓ 0.8597 0.7690 0.8625
✓ K-means ✓ 0.8267 0.7266 0.7875
✓ △ ✓ 0.9156 0.8013 0.9125
✓ ✓ ✓ 0.9149 0.8025 0.9125
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