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Abstract. Despite significant breakthrough in computational pathology
that Medical Hyperspectral Imaging (MHSI) has brought, the asymmet-
ric information in spectral and spatial dimensions pose a primary chal-
lenge. In this study, we propose a multi-stage multi-granularity Focus-
tuned Learning paradigm for Medical HSI Segmentation. To learn subtle
spectral differences while equalizing the spatiospectral feature learning,
we design a quadruplet learning pre-training and focus-tuned fine-tuning
stages for capturing both disease-level and image-level subtle spectral
differences while integrating spatially and spectrally dominant features.
We propose an intensifying and weakening strategy throughout all stages.
Our method significantly outperforms all competitors in MHSI segmen-
tation, with over 3.5% improvement in DSC. Ablation study further
shows our method learns compact spatiospectral features while cap-
turing various levels of spectral differences. Code will be released at
https://github.com/DHC233/FL.
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1 Introduction

Hyperspectral imaging (HSI) heralds a pivotal advancement in the field of medi-
cal technology, offering deep insights into the physiological and biochemical prop-
erties of tissues, especially in cancer detection and management [9]. Despite the
fact that extensive spectral information and pixel-level spatial resolution of HSI
(Fig. 1(a)) facilitate the precise identification, its inherent high dimensionality
results in complex data processing, i.e., spectral redundancy. Spectral redun-
dancy exhibits low-rank properties of the dataset with overlapping or repetitive
information across spectral bands. By calculating the spectral angles, Spectral
Angle Mapper (SAM) heatmap [10] quantifies the similarity between spectral
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Fig. 1. (a): an example of MHSI. (b): Spectral Angle Mapper (SAM) heatmap. (c)-(f):
MHSI segmentation structures.
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signatures. It reveals common low spectral angles (< 18° in Fig. 1(b)) among
adjacent spectra, indicating high spectral redundancy and underscoring the chal-
lenge in discerning subtle spectral variations.

A key challenge in medical hyperspectral image (MHSI) representation learn-
ing is how to balance the asymmetric information of spectral and spatial dimen-
sions. Three types of structures are adopted for MHSI segmentation, including
(1) 2D/3D networks, (2) spatiospectral sequential learning and (3) spatiospectral
parallel learning. It is not suitable to directly employ a 2D or 3D network with
the shortage of the spectral analysis [7] for 2D (Fig. 1(c)) and the surplus of net-
work parameters [6] for 3D (Fig. 1(d)). Sequential operation (Fig. 1(e)) merely
processes one dimension (spectral or spatial) with absence of the other at each
stage. Though it attempts to extract subtle spectral differences [16, 18], focusing
solely on spectral dimensions may suppress previously learnt spatial information,
leading to insufficient learning of spatiospectral representations. Spatiospectral
parallel learning structure (Fig. 1(f)) achieves speedup by learning MHSI fea-
tures separately, and fusing them afterwards [19]. This post-fusion discourages
the network to learn effective spatiospectral features and parallel learning dis-
ables the network to learn spectral differences across spatial locations. Thus, an
ideal structure ought to focus on subtle spectral differences as well as equalize
the relationship between spatiospectral features.

Subtle spectral differences exists at both disease-level (raw MHSIs from
dataset) and image-level (extracted spatial and spectral features from images).
For a specific disease, its spectral curve (Fig. 4(a)) is an important prior. But
no methods considers the spectral differences from the disease level. Despite a
strong feature extractor, pure deformable attention [22] neglects the spatial in-
formation in extracting the spectral discriminative feature. Simply designing a
network to learn subtle spectral differences while maintaining spatial information
is not easy. A self-supervised model which forcefully diverges spectral differences
but gently separates spatial disparities can offer essential initialization informa-
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tion. Actively diverging spectral differences improves the accuracy of downstream
tasks by detecting subtle spectral variations among different substances.

To this end, we propose a multi-stage multi-granularity Focus-tuned Learning
paradigm (FL) for MHSI segmentation. With the focuses on subtle spectral dif-
ferences as well as the balance between spectral and spatial dimensions (focus-
tuned), our FL includes both pre-training and fine-tuning stages (multi-stage) for
addressing both disease-level and image-level subtle spectral differences (multi-
granularity). An “intensifying and weakening” strategy is launched for different
spectral bands and different (spatial and spectral) dimensions. In the main-
stream, we first design Spectral Focus Forge module (SFF) to intensify dominant
bands and weaken redundant ones to focus on subtle spectral differences at the
disease level. Then, we design a Bi-Scale Extractor and an Indicative Spatiospc-
tral Transformer to further process and re-integrate spatially and spectrally
dominant features for a better spatiospectral balance at the image level. More-
over, with the jointly pre-trained architectures (SFF and feature encoder), we
tailor Self-Supervised spatiospectral Quadruplet Learning (Quad-S Quadruplet
Learning or QSQL) to highlight subtle spectral differences while equalizing the
spatiospectral features for the downstream segmentation task. Experiments show
our architecture secures a notable 3.5% improvement in Dice coefficient metrics
over the second best competitor.

2 Methodology

2.1 Mainstream Focus-tuned Learning Architecture

The overall Focus-tuned Learning architecture (Fig. 2) is proposed to learn subtle
spectral differences from two granularities. At the disease level, Spectral Focus
Forge module is devised for focusing on subtle spectral differences from dataset.
At the image level, Bi-scale Extractor and Indicative Spatiospectral Transformer
is designed for balancing the spatiospectral features with focus on subtle spectral
differences. As the input, an MHSI is denoted by Z € REXWXB wwhere H x W
refers to spatial resolution and B refers to the number of the spectral bands.

Spectral Focus Forge Module (SFF) In SFF module, each band z; € Z(1 <
i < B) goes through Global Average Pooling, following with two fully connected
layers and one activation function (sigmod). After layer normalization, the fo-
cal coefficients w; € R! are acquired. The smaller focal coefficients mirror the
similarity among adjacent or near spectral bands, that is, existing spectral re-
dundancy. Assigned with focal coefficients on MHSI from dataset directly, z; is
transformed into z;, € Z’' ,where Z’ is the output feature of the SFF module,
with the enhancement of subtle spectral differences and the alleviation of spec-
tral redundancy from disease level. The disease-level processed Z' is divided into
G;(1<j< g) spectral groups with each three bands.
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Fig. 2. Mainstream Focus-tuned Learning architecture. The MHSI cube Z, is processed
through the Spectral Focus Forge and fed into the Feature Encoder (orange region) with
each three bands to construct feature pyramids. Then, these feature pyramids undergo
bifurcated processing in spatially dominant and spectrally dominant streams via Bi-
scale Extractor and Indicative Spatiospectral Transformer for the spatiospectral hybrid
indicator Indpy,. Ultimately, with the Indnys, a standard Feature Decoder generates
the predicted mask.

Bi-Scale Extractor Bi-Scale Extractor contains one spatially intensified stream
and another spatially weakened stream. Spectral groups G are first fed into the
feature extractor in parallel for the feature pyramid {L;i,Lj2, L;3, Lja} with
four-level hierarchy. The feature pyramid is then fed into two streams, each of
which is equipped with four independent adaptive average pooling layers con-
nected with four independent convolutional layers with d output channels. Due
to different scales in two adaptive average pooling layers, the number of spatial
feature dimension(F; > F,) varies in two streams. Greater spatial feature di-
mension represents more intensified focus on the spatial feature, and vice versa.
Concatenated with processed feature pyramid, the tensor S; and Sy with respec-
tive weakened and intensified spatial focus are generated.

Indicative spatiospectral Transformer Indicative spatiospectral Transformer
intensifies inter-spectral features by deformable spectral attention (DSA) and re-

integrates spatiospectral features by deformable cross attention (DCA;/DCA»

in Fig. 2). Tensor S}, generated from tensor Sy via DSA, and tensor S; sepa-

rately go through DCAy and DCA;. Inspired by [22], DSA and DCA are both

based on the deformable attention mechanism, which can be summarized as:

Nhead Niey

DeformAtin(q,p,x) = Z W; Z Aij - Wiz(p + Apij) (1)

i=1 j=1
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Fig. 3. (a): An example of sample selection in Quadruplet Learning. (b): Self-supervised
Spatiospectral Quadruplet Learning architecture. Parameters of the SFF module and
the feature encoder are trained during this process.

where ¢, p, x respectively represent the query, reference points and input features.
Nheaa is the total number of attention heads and Ny, is the total sampled key
number for each head. W; and W, are the learnable weights. A;; is the predicted
attention weight. Ap;; are the predicted offsets to the reference points p.

For DSA, in the f** position of Sy, it exists ? spectral vectors with d spatial
feature dimensions. Each spectral vector is regarded as a query vector. The
query vector is fed into a linear projection head to encode the sampled offset
and the attention weight. The number of sampled points R is derived from output
channels d (Fig. 2) to efficiently learn subtle spectral differences. The updated
spatiospectral features S} are generated after inter-group interactions by DSA.

For DCA, a set of learnable tokens Ind € RV*¢, as the queries of DCA, ex-
tract more representative high-level pathological information in the feature map.
The number of sampled points R’ is set to 8 x g at each level of the feature pyra-
mid with four-level hierarchy. Inds,. and Indsy,, constructed respectively by S5
and S; from spectral and spatial dominant streams, are concatenated into Indpy
as the substitute for the top level of the average feature pyramid that represents

the high semantic information. The refined feature pyramid {L1, Lo, L3, Indpys}
is finally fed into the feature decoder for the predicted mask M € R¥*W,

2.2 Self-supervised Spatiospectral Quadruplet Learning (QSQL)

To achieve better weight initialization which can balance spatiospectral features
with actively diverging subtle spectral differences and gently diverging spatial
disparities, we develop a self-supervised model called QSQL. We define four
elements: anchor A, positive sample S, spectral negative samples Sysp. and
spatial negative samples S, 5pq (Fig. 3 (a)). Metric-learning-based quadruplet loss
is utilized as the objective function. In the process, the weights of the SFF module
and the feature encoder for the anchor are trained, while those for positive and
negative samples are updated in a momentum manner (Fig. 3 (b)). Let Nypsr
denote the number of MHSI. Each spectral group G, ; in certain MHSI Z,, is
coupled with another spectral group, thus generating the spectral pairs P, i,
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where k and n refer to the k' spectral pair in the n** MHSI. Each pair consists
of an anchor and a positive sample. The other spectral groups in the MHSI Z,, are
regarded as spectral negative samples. Spectral groups in other MHSIs (except
Z,,) with the same bands of the anchor are classified as spatial negative samples.
According to the set theory, the description mentioned above is formulated as:

B
P ={Gn2k-1,Gnae} (L<k< 5 )i A= Gnawi Sp = Gnan-1; (2)
£ B
Snspa = UiL4 51 Giaki Snspe = Uiy sy P = ULt iz qon—1,26} G
Fig. 3 (b) illustrates the generation process of four features v, vp, Ufzspe» vflspm
and the quadruplet loss Lq is proposed as follows:
;i ‘
L:Q B 2 max{d(vm Up) - d(Ua’ U:LSPG) + o, 0}
3 i=1
1 Nyvasi
k
Voo 2 max{dlve ) — dve vl £ 5,00 (3)

k=1

where d(+, -) is Euclidean distance between two samples, d(z,y) = ||z—y]|2. o and
[ are two margin parameters that « is greater than S in terms of the stronger
repulsion in spectral dimension and weaker repulsion in spatial dimension.

3 Experimental Results

3.1 Experimental Setup

We use the public Multi-Dimensional Choledoch (MDC) Dataset [21] with 538
scenes, and the private Gastric Poorly-Cohesive Carcinoma (GPCC) Dataset
with 600 scenes. Both are high-quality annotated for binary MHSI segmentation
tasks. The MDC dataset encompasses 60 spectral bands, whereas the GPCC
dataset contains 40 spectral bands per scene. Each scene’s single band image
is resized to 256 x 256 spatial resolution. Consistent with [17], datasets are
divided into training, validation, and test sets following a patient-centric hard
split method, maintaining a ratio of 3:1:1. This strategy ensures that data from
the same patient are exclusively assigned to one of the three subsets, preventing
any overlap of patient data across different sets.

Initialized with ImageNet-1K [12] pre-trained weights, QSQL adopts data
augmentation techniques (rotation, flipping, and brightness/contrast adjustments).
We employ the cosine learning rate decay scheduler with a peak rate of 0.03 and
a 10-epoch warm-up for pre-training, capping at 300 epochs. For fine-tuning in
semantic segmentation tasks, a AdamW [5] optimizer and a cosine decay sched-
uler are used, starting at a learning rate of 4 x 10™* for 100 epochs. The loss
function in fine-tuning combines dice loss and cross-entropy loss. Experiments
are conducted using PyTorch 1.11.0 on an NVIDIA GeForce RTX 4090 GPU.
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Table 1. Performance comparison with SOTA methods on MDC dataset and GPCC
dataset. The best-performing configurations are highlighted for clarity.

M MDC GPCC
ethod
DSC(%)1 IoU(%)T HD(px)! DSC(%)1 IoU(%)T HD(px){

HyperNet [14] 72.31 59.54 75.36 69.52 54.83 92.99
nnUNet [4] 74.06 61.33 71.69 71.87 55.32 86.37
FSS [19] 74.62 61.61 68.67 71.45 54.99 87.48
Spec-Tr [18] 73.06 60.36 67.96 71.60 55.01 86.84
Swin-UNETR |[13] 72.04 58.69 72.80 70.93 54.93 89.66
3DUNet [2] 72.48 58.92 73.99 70.76 53.79 92.26
FL(without QSQL)(ours) 76.80 64.24 66.40 74.27 58.18 83.92
DMVL [§] 71.97 59.49 72.75 70.36 54.37 90.07
SimSiam [1] 73.42 60.78 68.61 71.34 55.48 85.89
BYOL [3] 72.83 60.18 68.54 71.73 55.64 86.70
DF-S°R [16] 75.38 63.39 69.09 72.29 56.52 86.13
FL(ours) 78.39 65.78 63.01 75.76 60.44 80.92

3.2 Evaluation of the FL

Comparisons with State-of-the-art MHSI Segmentation Methods Ta-
ble 1 shows that our models, FL (without QSQL) and FL, outperform current
state-of-the-art approaches on the MDC and GPCC datasets compared to four
main competitors: (1) popular architectures for medical image segmentation (nn-
UNet [4], 3D-UNet [2] and SwinUNETR [13]), (2) architectures for HSI segmen-
tation (Spec-Tr [18], F'SS [19] and HyperNet [14]), (3) architectures for natural
image segmentation with pre-training (DMVL [8], SimSiam [1] and BYOL |[3]),
(4) architectures for HSI segmentation with pre-training (DF-S®R. [16]). Results
show that our architecture secures a notable 3.5% improvement in Dice coef-
ficient metrics over the second best in the GPCC dataset. Even FL (without
QSQL) maintains a leading position in metrics across both datasets. The seg-
mentation visualizations are shown in the supplementary material.

We further explore the effectiveness of FL by insightful interpretation of the
proposed method with t-SNE visualization (Fig. 4 (d)-(f)). Compared to the
self-supervised methods DF-S?R [16], FL significantly increases the inter-class
distance and reduces the intra-class distance, due to the ability of diverging sub-
tle spectral differences and spatial disparities provided by Quadruplet learning.

Ablation Study We conduct an ablation study to elucidate the efficacy of each
component integrated into our architecture. The learned weights at the disease
level (Fig. 4 (b)) explain how SFF module function. The significant value differ-
ences of focal coefficients for adjacent bands indicate that our SFF can reduce
the bands redundancy. After applying a Gaussian filter to focal coefficients, the
golden dashed line reveals a clear correlation between the weight distribution
trend and the distance between foreground and background Intensity Values in
Fig. 4 (a). This correlation highlights the strength of SFF, i.e., spectral bands
crucial for segmentation are assigned with higher value to emphasize their roles
for segmentation, leading to 1.21% improvement in DSC (Table 2). Table 2 shows
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Fig. 4. (a): Spectral intensity in MDC dataset. (b): Spectral focal coefficients distri-
bution. (c): Sampled points distribution in the Indicative Spatiospectral Transformer
module of one image in MDC dataset and its corresponding spectral intensity plot.
(d)-(f): t-SNE visualization of the first layer features from the Decoder across different
methods. (g): Feature redundancy in MDC dataset.

Table 2. Ablation study on MDC dataset using RegNet34. CrossAttl and CrossAtt2
are Deformable Cross Attention mechanisms for spectral and spatial streams, respec-
tively. “Van” represents vanilla self-attention and cross-attention operations. “SFF” and
“BSE” refer to Spectral Focus Forge module and Bi-scale Extractor. QSQL indicates
the use of self-supervised pre-training.

SpeAttn CrossAttn BSE SFF  QSQL Metrics
1 2 DSC(%)t IoU(%)t HD(px))
X X X X X X 72.82 59.77 72.69
v X X X X X 73.42 60.60 71.94
v v X X X X 74.63 61.79 70.70
X v v X X X 73.94 60.46 70.65
v v v X X X 75.38 62.07 68.82
Van Van Van X X X 73.28 61.17 72.72
v v v v X X 75.59 62.15 67.59
v v v v v X 76.80 64.24 66.40
v v v v v v 78.39 65.78 63.01

applying Indicative Spatiospectral Transformer (DCA; and DSA+DCA,) yields
a 2.56% improvement in DSC. We show the sampled points by DCA; in Fig. 4
(c). The band where the most sampled points gather is in immediate vicinity to
the most discriminative bands with the vast intensity value gap from cancer to
normal tissues. With the initialized weights provided by our QSQL, the DSC is
further boosted from 76.80% to 78.39%.

FL Reduces Feature Redundancy Since high feature redundancy limits
the generalization of neural networks [20], we demonstrate that FL effectively
reduces the redundancy of high-level features. Following [15], we calculated the
Pearson correlation coefficient among features in the feature pyramid’s last layer
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to assess feature redundancy. As indicated in Fig. 4 (g), FL exhibits lower feature
redundancy compared to DF-S3R [16] and the vanilla UNet [11] baseline.

4 Conclusion

In this paper, a multi-stage multi-granularity Focus-tuned Learning paradigm for
MHSI segmentation is proposed with intensifying and weakening strategy. The
pre-training stage, adopting self-supervised spatiospectral quadruplet learning,
can well initialize the downstream with a appreciable balance in spatiospectral
feature learning. The fine-tuning stage can better focus on both disease-level
and image-level subtle spectral differences and balance the spatiospectral fea-
ture learning. Experiments show our method achieves much better segmentation
performance than other state-of-the-arts with over 3.5% improvement in DSC.
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