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Abstract. Using brain imaging data to predict the non-neuroimaging
phenotypes at the individual level is a fundamental goal of system neu-
roscience. Despite its significance, the high acquisition cost of functional
Magnetic Resonance Imaging (fMRI) hampers its clinical translation in
phenotype prediction, while the analysis based solely on cost-efficient
T1-weighted (T1w) MRI yields inferior performance than fMRI. The
reasons lie in that existing works ignore two significant challenges. 1)
they neglect the knowledge transfer from fMRI to T1w MRI, failing
to achieve effective prediction using cost-efficient T1w MRI. 2) They
are limited to predicting a single phenotype and cannot capture the
intrinsic dependence among various phenotypes, such as strength and
endurance, preventing comprehensive and accurate clinical analysis. To
tackle these issues, we propose an FMRI to T1w MRI knowledge trans-
fer Network (F2TNet) to achieve cost-efficient and effective analysis
on brain multi-phenotype, representing the first attempt in this field,
which consists of a Phenotypes-guided Knowledge Transfer (PgKT) mod-
ule and a modality-aware Multi-phenotype Prediction (MpP) module.
Specifically, PgKT aligns brain nodes across modalities by solving a
bipartite graph-matching problem, thereby achieving adaptive knowl-
edge transfer from fMRI to T1w MRI through the guidance of multi-
phenotype. Then, MpP enriches the phenotype codes with cross-modal
complementary information and decomposes these codes to enable ac-
curate multi-phenotype prediction. Experimental results demonstrate
that the F2TNet significantly improves the prediction of brain multi-
phenotype and outperforms state-of-the-art methods. The code is avail-
able at https://github.com/CUHK-AIM-Group/F2TNet.
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Fig. 1. (a) Prior works consistently rely on single modality data for predicting brain
phenotype during inference. (b) The proposed F2TNet can achieve effective multi-
phenotype prediction exclusively by utilizing cost-efficient T1w MRI during inference.
For the specific multi-phenotype selection, please refer to the Preprocessing in Sec. 3.1.

1 Introduction

Using brain imaging data to predict non-neuroimaging phenotypes, such as fluid
intelligence or clinical outcomes, is a fundamental goal of systems neuroscience
[1,15]. Enhancing phenotype prediction not only augments our understanding of
brain decoding but also establishes the foundation for disease diagnosis, precision
medicine, and neuroscience research [2]. However, achieving precise phenotype
prediction is challenging due to the complex relationships among brain structure,
function, and phenotypes, as well as the individual-level variability [5,12,23,31].

Currently, existing works [3,6,7,23] have been proposed to address the men-
tioned challenge and can be divided into two categories according to the data
modality used during inference. First, as shown in Fig. 1(a) left, numerous stud-
ies [3,6,7] focus on leveraging fMRI for phenotype prediction. They model brain
regions as graph nodes, formulate graph edges with the correlations between
brain regions’ fMRI, and deploy graph convolutional networks for phenotype
prediction. Despite achieving great successes, the high cost of fMRI data acquisi-
tion poses a significant barrier to its practical application in clinical settings [22].
Second, illustrated in Fig. 1(a) right, some effort [23] has been conducted to use
cost-efficient T1w MRI for phenotype prediction. [23] extract brain surface in-
formation such as cortical thickness or curvature as brain region features and
build regression models to predict phenotypes. Nevertheless, these results are in-
ferior to fMRI-based data, primarily because the phenotype is relatively a more
direct reflection of brain functions while the complex relationship between brain
structure and function is not yet fully understood and mapped [4, 10–12,28].

Despite some advancements, existing methods [3,6,7,23] fail to address both
cost-efficient and effective simultaneously [14,19], due to two overlooked deficien-
cies. Firstly, they [3, 6, 7, 23] neglect the knowledge transfer from fMRI to T1w
MRI data, resulting in the inability to achieve effective prediction using cost-
efficient T1w MRI data. Direct knowledge transfer between modalities may lead
to suboptimal solutions due to the ambiguous relationship between brain struc-
ture and function [10–12, 29]. Consequently, as illustrated in Fig. 1(b), our ob-
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jective is to establish a good function-structure mapping for effective knowledge
transfer from fMRI to T1w MRI data, enabling effective structure-to-phenotype
prediction. Secondly, existing research [23] that solely utilizes T1w MRI for in-
ference primarily concentrates on predicting a single phenotype, and cannot
capture the intrinsic dependence among various phenotypes, such as strength
and endurance, preventing comprehensive and accurate clinical analysis [29].
Therefore, as shown in Fig. 1(b), we aim to introduce a modality-aware multi-
phenotype prediction, exploring the relationships between various phenotypes
and imaging data, ensuring robust predictions for multi-phenotype.

To this end, we propose a novel FMRI to T1w MRI knowledge transfer Net-
work (F2TNet) for cost-efficient and effective brain multi-phenotype prediction,
which consists of a Phenotypes-guided Knowledge Transfer (PgKT) module,
and a modality-aware Multi-phenotypes Prediction (MpP) module. Specifically,
in the PgKT module, we align brain nodes across modalities by solving a bi-
partite graph-matching problem, thereby achieving adaptive knowledge transfer
from fMRI to T1w MRI through the guidance of multi-phenotype. In the MpP
module, we enrich the phenotype codes with cross-modal complementary infor-
mation and decomposes these codes to enable accurate multi-phenotype pre-
diction. Ultimately, during inference, we can achieve effective multi-phenotype
prediction solely using T1w MRI. In summary, the main contributions are as
follows: (1) We propose the F2TNet for cost-efficient and effective brain multi-
phenotype prediction. To the best of our knowledge, this is the first attempt
to achieve multi-phenotype prediction during inference using only T1w MRI.
(2) We design a PgKT module to enable brain node alignment and knowledge
transfer from fMRI to T1w MRI, and an MpP module to decompose modality-
aware phenotype codes, achieving multi-phenotype prediction. (3) Experimental
results demonstrate that the F2TNet significantly improves the prediction of
multi-phenotype and outperforms state-of-the-art methods.

2 Method

The overview of our proposed network is shown in Fig. 2, which contains two
parts. For a subject with N nodes of fMRI and T1w MRI data, and K phenotype
labels denoted as Y ∈ R1×K , the fMRI and T1w MRI Ps,Pt are independently
input into the Vision Transformer (ViT) [19, 21] to obtain the respective fea-
tures and phenotype codes. These are represented as Fs ∈ RN×d,Ts ∈ RN×d for
fMRI, and Ft ∈ RN×d,Tt ∈ RK×d for T1w MRI. Subsequently, bipartite graph
matching is employed for cross-modality node alignment, followed by modality
knowledge transfer denoted as F

′

s,F
′

t, guided by phenotype codes in the PgKT
module (Fig. 2(a), Sec. 2.1). Finally, the modality-aware phenotype codes T

′

s,T
′

t

are decomposed for multi-phenotype prediction, denoted as Ŷ, in the MpP mod-
ule (illustrated in Fig. 2(b), Sec. 2.2). The details will be introduced below.
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Fig. 2. Overview of the F2TNet. Notably, we solely utilize T1w MRI during inference.

2.1 Phenotypes-guided Knowledge Transfer (PgKT)

Cross-modality Alignment: As shown in Fig. 2(a), to augment cross-modality
knowledge transfer, we propose bipartite graph matching to match nodes across
modalities and permute fMRI nodes in a data-driven manner, thereby achiev-
ing modality alignment, instead of directly enforcing node alignment between
modalities [25]. Firstly, we employ bipartite matching to ascertain a soft cor-
respondence matrix between the two modalities, which is expressed as: M =
Gbm(Fs,Ft), where Gbm consists of an Affinity layer, an Instance normaliza-
tion layer, a quadratic constrain (QC) layer, and a Sinkhorn layer. The affinity
matrix is first computed as A = FsCFt, where C ∈ Rd×d is the learnable
parameter matrix in the affinity layer. Subsequently, we apply instance normal-
ization [11] to transform A into a matrix with positive elements within finite
values. The QC is introduced to minimize the structural difference of matched
node pairs [16,17,20], while the Sinkhorn layer [16] aids in calculating a double-
stochastic affinity matrix through maximum iteration optimization, resulting in
the soft assignment matrix M. Secondly, we utilize the derived cross-modality
brain node matching matrix M to permute the nodes of the fMRI Fs, facilitating
cross-modality alignment. This can be expressed as: Fp

s = FsM.
Modality Knowledge Transfer: Considering the diverse significance of dif-
ferent nodes in modality knowledge transfer, we incorporate the phenotype ac-
tivation maps to discern the varying importance of nodes and enhance modality
knowledge transfer in a data-driven manner. Specifically, we construct a pheno-
type activation maps, denoted as Hs,Ht, for data from the two modalities.
The elements of this map indicate the importance of the n-th node within
each modality for predicting the k-th phenotype. It can be expressed as fol-
lows: Hs = Ts(F

p
s)

T
,Ht = Tt(Ft)

T , where Hs,Ht ∈ RK×N . Guided by multi-
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phenotype, we obtained the activated node features F
′

s,F
′

t, which is defined as:

F
′

s = (
k=K∑
k=1

hs,k)@Fp
s ,F

′

t = (
k=K∑
k=1

ht,k)@Ft, (1)

where A@B represents the element-wise multiplication of A and B across each
channel and F

′

s,F
′

t ∈ RN×d. Subsequently, we conduct contrastive learning [30]
across modalities of nodes to facilitate the transfer of knowledge. Our target is
to guarantee that the corresponding nodes across different modalities exhibit
similarity, while the non-corresponding nodes display distinct characteristics.
Specifically, given an anchor fMRI node code f

′

s,i, with i indicating the index of
node, we regard codes f

′

t,i belonging to the matched node but different modalities
as positive ones, and codes f

′

t,j,j ̸=i belonging to other node as negative ones.
To restrain the anchor codes and positive/negative codes via measuring their
similarities, the modality knowledge transfer loss is formulated as follows:

Li,j
mc = − log

hθ

(
f

′

s,i,f
′

t,i

)
hθ

(
f

′
s,i,f

′
t,i

)
+

∑N
j=1 1[j ̸=i]hθ

(
f

′
s,i,f

′
t,j

) , (2)

where 1[j ̸=i] ∈ 0, 1 is an indicator function evaluating to 1 if j ̸= i , and hθ(., .)
denotes the affinity metric function and we adopt exponential cosine similarity
T as: hθ(p, q) = exp ( p·q

∥p∥·∥q∥ · 1
T ), where T is the temperature factor facilitating

the model to learn from hard negatives. Optimized by this contrastive loss, the
model can directly transfer fMRI knowledge to T1w MRI data.

2.2 Modality-aware Multi-phenotype Prediction (MpP)

Modality-aware Phenotype Codes Decomposition: As shown in Fig. 2(b),
we employ cross-attention [27] to enrich the phenotype codes with cross-modality
complementary information, thereby obtaining modality-aware phenotype codes.
The attention layer selects the information between phenotype codes by mea-
suring the similarity between the query Q and the key K. The output vector is
the sum of the value V weighted by the similarity scores. The multi-head atten-
tion layer is defined as MHAttn(Q,K,V), Q comes from the phenotype codes,
K and V come from the brain node codes. The outputs of Cross-attention are:
T

′

s = MHAttn(Ts,F
′

s,F
′

s),T
′

t = MHAttn(Tt,F
′

t,F
′

t). Subsequently, we imple-
ment contrastive learning on modality-aware phenotype codes to accomplish
inter-phenotype decomposition. Given a modality phenotype code t

′

s,i, as the
anchor, phenotype code belonging to the same phenotype but different modality
are regarded as positive ones t

′

t,i, and phenotype code belonging to other modal-
ity and other phenotype are regarded as negative ones t

′

t,j,j ̸=i, the formulation
of the phenotype contrastive loss is as follows:

Li,j
pc = − log

hθ

(
t
′

s,i, t
′

t,i

)
hθ

(
t
′
s,i, t

′
t,i

)
+

∑N
j=1 1[j ̸=i]hθ

(
t
′
s,i, t

′
t,j

) , (3)
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where t
′

s,i, t
′

t,i, and t
′

t,j,j ̸=i are anchor, positive and negative phenotype code.
Multi-phenotype Prediction: To predict multi-phenotype, we employ multi
multi-layer perceptron (MLP) to build predictor for each phenotype. This can
be expressed as: Ŷ = σ(T

′

sΘ), where Θ denotes the learnable parameters of
predictor, σ(·) is the nonlinear activation function. Ultimately, we employ mean
squared error (MSE) loss function to calculate the cost between the ground truth
and the predicted multi-phenotype. The prediction loss is defined as follows:

Lpred = MSE(Ŷ,Y) (4)

2.3 Model Optimization:

In the training of this work, we introduce hyperparameters α and β to add up
Lpred, Lmc, and Lpc. Then, the overall train loss is denoted as follows:

L = Lpred + αLmc + βLpc, (5)

where α and β are hyperparameters to control the intensity. During inference,
precise multi-phenotype prediction is achievable solely using T1w MRI data.

3 Experiments and Results

3.1 Experimental setup

Dataset: We evaluate our network effectiveness by conducting experiments on
the WU-Minn Human Connectome Project (HCP) consortium [26]. HCP par-
ticipants gave written informed consent, and the relevant institutional review
boards approved the study. For detailed imaging data parameter, please see [26].
Preprocessing: T1w MRI and resting state fMRI have been preprocessed by
the HCP minimal preprocessing pipeline [8]. Utilizing the Gordon atlas [9], 333
cortical regions are derived for each subject. For the fMRI, we compute the aver-
age signals of vertices within cortical regions, constructing a 333×333 functional
connectivity matrix Ps based on Pearson correlations. Negative correlations are
eliminated, along with 90% of the weakest positive correlations. The row vec-
tors of Ps represent features of each node [7]. For the T1 MRI, we calculate the
mean curvature, convexity, cortical thickness, correlation thickness, edge dis-
tortion, area distortion, sphere distortion, bias field, smooth myelin map within
each region based on the surface and construct a 333×9 structural feature matrix
Pt. The row vectors of this matrix Pt are treated as the features of each node.
Given that the phenotype spans multiple domains, we selected a total of twelve
phenotypes (#1: VSPLOT_TC, #2: ReadEng_Unadj, #3: PercStress_Unadj,
#4: AngAggr_Unadj, #5: Strength_Unadj, #6: Endurance_Unadj, #7: PicVo-
cab_Unadj, #8: ListSort_Unadj, #9: AngHostil_Unadj, #10: Loneliness_Unadj,
#11: MeanPurp_Unadj, #12: Dexterity_Unadj) across the three domains of
cognition, emotion, and motor. The phenotypes are individually normalized to
the range [0, 1] using the minimum and maximum values [6].
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Table 1. Comparison with state-of-the-art methods (based on PCC and RMSE). Infer.
denotes the data needed for inference, S/M indicates whether it predicts a Single- or
Multi-phenotype, and #1-#6 represent different phenotypes. Light blue shading indi-
cates the use of only T1w MRI during inference, and the best results are highlighted.

Phenotypes
Metric: PCC (10−1) ↑ Metric: RMSE (10−1) ↓Method Row Train Infer.

S
/
M #1 #2 #3 #4 #5 #6 #1 #2 #3 #4 #5 #6

1 fMRI fMRI S 2.23 2.19 1.18 2.63 2.75 2.07 2.45 2.78 2.63 3.84 3.30 3.60Brain
GNN [18] 2 T1w T1w S 1.02 0.43 0.16 0.21 1.13 1.07 3.42 3.74 2.95 5.35 3.20 4.36

3 fMRI fMRI S 2.31 2.57 1.53 2.52 2.74 2.53 2.41 2.33 2.44 3.91 3.34 3.01SaU-B
Net [3] 4 T1w T1w S 0.98 0.45 0.22 0.28 1.31 1.01 3.44 3.78 2.91 5.27 3.21 4.34

5 fMRI fMRI S 2.37 2.28 1.07 2.61 2.81 2.31 2.37 2.63 2.66 3.84 3.27 2.88KRR
[23] 6 T1w T1w S 1.11 0.77 0.19 0.27 1.22 1.13 3.29 3.21 3.07 5.31 3.19 4.07

7 fMRI fMRI S 2.27 2.34 1.37 2.66 2.69 2.40 2.44 2.42 2.57 3.84 3.41 2.73At-Cen
Net [7] 8 T1w T1w S 0.96 0.54 0.22 0.31 1.09 1.15 3.51 3.53 2.93 5.20 3.35 4.01

9 fMRI fMRI S 2.57 3.16 1.89 3.12 2.98 3.07 2.27 2.14 2.48 3.21 2.93 2.27
10 T1w T1w S 1.22 0.54 0.25 0.65 1.33 1.16 3.23 3.49 2.89 4.08 3.13 4.03
11 fMRI fMRI M 2.47 3.11 1.91 2.97 2.73 2.96 2.28 2.21 2.54 3.19 3.01 2.33
12 T1w T1w M 1.18 0.47 0.33 0.39 1.29 1.04 3.34 3.71 2.93 4.07 3.20 4.11Our

13 fMRI,
T1w T1w M 2.27 2.77 1.50 1.56 3.54 2.97 2.30 2.20 2.42 3.92 2.01 2.38

Evaluation: We adopt the Pearson’s correlation coefficient (PCC) and root
mean square error (RMSE) between the ground truth and predicted values as
evaluation metrics for our proposed model [6]. To evaluate the performance of
our model, we compare it against several state-of-the-art phenotype prediction
methods, including BrainGNN [18], SaU-BNet [3], KRR [23], and At-CenNet [7].
Notably, we exclude comparisons with non-open-source methods such as [6].
Implementation Details: We utilize the Adam optimizer [13] with 3 × 10−5

learning rate, 5×10−4 weight decay, 10 batch size, and 100 epochs. Our model uti-
lizes a ViT architecture with 3 depths, 333 node tokens, and 6 phenotype tokens.
We set the hyperparameters α=0.8, and β=1, the feature channel d=2048. We
implement our network using the PyTorch library [24]. Among the 870 subjects,
5 subjects are excluded due to missing phenotype measures. From the remaining
subjects, we randomly select 525/170/170 for training/validation/testing.

3.2 Experimental Results

Comparison with State-of-the-arts: The comparative results of phenotypes
#1-#6 are presented in Table 1. When predicting solely with T1w MRI (indi-
cated by light blue shading) during inference, our approach demonstrates supe-
rior performance across both PCC and RMSE (13th row). Simultaneous predic-
tion of six phenotypes yields an average PCC=0.24± 0.081 and RMSE=0.25±
0.069, surpassing existing methods [3, 18, 23]. These results demonstrate that
our method successfully transfers knowledge from fMRI to T1w MRI and de-
composes phenotype codes. F2TNet outperforms even when only fMRI is uti-
lized (9th row). This not only substantiates that fMRI indeed encapsulates
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Table 2. The impact of each component of our proposed F2TNet on the prediction
performance (based on PCC and RMSE). The best results are highlighted.

Components

Phenotypes
Metric: PCC (10−1) ↑ Metric: RMSE (10−1)) ↓

#1 #2 #3 #4 #5 #6 #1 #2 #3 #4 #5 #6
w/o Node Alignment 1.99 2.49 1.31 1.35 3.11 2.68 2.41 2.33 2.49 4.21 2.19 2.41
w/o Modality-aware Phenotype 2.11 2.63 1.49 1.47 3.02 2.68 2.33 2.29 2.53 3.97 2.05 2.47
w/o Lpc 0.97 0.54 0.82 1.01 2.11 0.99 3.41 3.68 3.41 2.97 3.21 4.08
Our 2.27 2.77 1.50 1.56 3.54 2.97 2.30 2.20 2.42 3.92 2.01 2.38

0
0 1

1

Ground Truth

Pr
ed

ic
te

d 
va

lu
e

#1: VSPLOT_TC

PCC=0.227, *** 0
0 1

1

Ground Truth

Pr
ed

ic
te

d 
va

lu
e

#2: ReadEng_Unadj
PCC=0.277, ***

0
0 1

1

Ground Truth

Pr
ed

ic
te

d 
va

lu
e

#3: PercStress_Unadj
PCC=0.150, *

0
0 1

1

Ground Truth

Pr
ed

ic
te

d 
va

lu
e

#4: AngAggr_Unadj

PCC=0.156, * 0
0 1

1

Ground Truth

Pr
ed

ic
te

d 
va

lu
e

#5: Strength_Unadj

PCC=0.354, *** 0
0 1

1

Ground Truth

Pr
ed

ic
te

d 
va

lu
e

#6: Endurance_Unadj

PCC=0.297, ***

#1 #2

#3 #4

#5 #6
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Fig. 3. (a) The distribution of predicted values for the six phenotypes. * denote the
P-value<0.05, and *** denote the P-value<0.0005. The red line represents a linearly
fitted trend line. The red dashed lines contain the 90% prediction interval. (b) The
visualization results of phenotype active maps based on Gordon atlas.

more information but also verifies that our approach can yield more precise
predictions. In addition, we sequentially exclude two phenotypes for predict-
ing four phenotypes simultaneously in 15 experiments, resulting in an aver-
age PCC=0.25 ± 0.075 and RMSE=0.24 ± 0.064. Subsequently, using pheno-
types #7-#12 for predicting all six phenotypes simultaneously, the average
PCC=0.22 ± 0.084, the RMSE=0.26 ± 0.074, and it outperforms state-of-the-
art methods, demonstrating the effectiveness and robustness of our method.
Ablation Studies: Table 2 displays ablation studies that verify the efficacy of
each component of the proposed F2TNet. Taking Phenotype #1 as an example,
our findings underscore the importance of aligning cross-modality brain nodes in
a data-driven manner, evident from the impact on PCC when node alignment is
omitted (PCC=0.20). Introducing the modality-aware phenotype enhances the
PCC, with modality-aware phenotype removal leading to PCC=0.21. Removing
the phenotype codes decomposition loss resulted in PCC=0.097, suggesting that
the decomposition of phenotype codes significantly enhances prediction accuracy.
Hence, each component is necessary for the F2TNet to achieve precise results.
Qualitative Analysis: Fig. 3(a) shows the distribution of predicted values and
true values for 6 phenotypes, showcasing high correlations and successful multi-
phenotype prediction using cost-efficient T1w MRI. In Fig. 3(b), the pheno-
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type activation maps for #1-#6 reveal similar activation regions for phenotypes
within the same domain (#1/#2, #3/#4, #5/#6), indicating our method’s
ability to capture inherent dependencies among phenotypes in the same domain.

4 Conclusion

In this paper, we propose a novel network F2TNet for cost-efficient and effective
brain multi-phenotype prediction. F2TNet consists of a PgKT module to enable
brain node alignment and knowledge transfer from fMRI to T1w MRI through
the guidance of multi-phenotype, and an MpP module to decompose modality-
aware phenotype codes, achieving multi-phenotype prediction. Experimental re-
sults demonstrate that F2TNet outperforms existing approaches significantly.
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