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Abstract. Cancer remains a leading cause of death, highlighting the
importance of effective radiotherapy (RT). Magnetic resonance-guided
linear accelerators (MR-Linacs) enable imaging during RT, allowing for
inter-fraction, and perhaps even intra-fraction, adjustments of treat-
ment plans. However, achieving this requires fast and accurate dose
calculations. While Monte Carlo simulations offer accuracy, they are
computationally intensive. Deep learning frameworks show promise, yet
lack uncertainty quantification crucial for high-risk applications like RT.
Risk-controlling prediction sets (RCPS) offer model-agnostic uncertainty
quantification with mathematical guarantees. However, we show that
naive application of RCPS may lead to only certain subgroups such
as the image background being risk-controlled. In this work, we extend
RCPS to provide prediction intervals with coverage guarantees for mul-
tiple subgroups with unknown subgroup membership at test time. We
evaluate our algorithm on real clinical planing volumes from five differ-
ent anatomical regions and show that our novel subgroup RCPS (SG-
RCPS) algorithm leads to prediction intervals that jointly control the
risk for multiple subgroups. In particular, our method controls the risk
of the crucial voxels along the radiation beam significantly better than
conventional RCPS.

1 Introduction

Cancer remains one of the leading causes of death for people under the age of 70.
Radiotherapy (RT) has been proven to be a critical treatment modality for var-
ious tumour entities. Recent advancements in medical imaging have led to the
development of the magnetic resonance-guided linear accelerator (MR-Linac),
which integrates MR imaging with RT [8]. Aligning the computed tomography
(CT) planing volume to an MR scan acquired at the beginning of each treatment
fraction, and re-evaluating the treatment plan based on the transformed CT vol-
ume allows to better adjust the plan to the patient’s inter-fraction changes. This
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holds the potential for more precise tumor targeting, enhancing treatment out-
comes. However, in order to successfully realize these benefits, fast and accurate
dose deposition calculations are needed. Current algorithms are based on Monte
Carlo simulations, which provide highly accurate results ([4]). However, these
calculations are computationally intensive, taking minutes to hours. Therefore
recent research has focused on optimizing treatment planning efficiency [17].
Deep learning (DL) frameworks have shown encouraging results in dose estima-
tion for RT, with fast calculation time and accurate predictions [13,15,16,18].
However, despite RT’s high-risk nature, prior approaches have not adequately
addressed risk assessment within DL-based dose estimation.

A natural approach for assessing the risk associated with a prediction is
quantifying the prediction uncertainty. Recent years have seen the development
of various methods for uncertainty quantification in medical imaging. Examples
include deep ensembles [14], Monte Carlo dropout [11], or approaches based
on variational autoencoders [3,6,12]. A major limitation of those techniques is
that they do not provide any guarantees about the usefulness or correctness of
the uncertainty estimates. Recently, risk-controlling prediction sets [2] (RCPS)
has gained popularity as a simple, model-agnostic strategy to adapt heuristic
notions of uncertainty into uncertainty measures with guarantees. RCPS allows
to construct a set of predictions with a guarantee that the correct solution is
inside this set with a user-defined probability. Such prediction sets can indicate
poor model performance through excessively large intervals, revealing that the
models may not be acceptable for certain high-risk applications.

While RCPS has already seen successful adoption in medical image analysis
(e.g. [1]), a remaining limitation is that it can only provide guarantees on a
global level. There are many situations where we are interested in obtaining
guarantees for different subgroups of our population, or different image regions.
For instance, in RT, we would like the method to be calibrated along the beam
as well as the background. If there is an imbalance between different subgroups
(e.g. more background voxels) naive application of RCPS will focus mostly on
the majority group (e.g. background) and fail to meet the guarantees for the
minority subgroup (e.g. the beam). Calculating RCPS for the different subgroups
separately is only a solution if the subgroup is known at test time. However, if
this is not the case, as in our RT example, it is not possible to determine the
correct RCPS model to use for prediction.

In this paper, we address this problem by proposing a novel calibration al-
gorithm for RCPS that takes into account subgroups and can provide subgroup
as well as global guarantees. Our contributions are:

1. The first application of uncertainty quantification in neural network-based
dose estimation for RT.

2. A novel algorithm that yields mathematical guarantees for uncertainty in-
tervals for subgroups in the dataset.

3. A quantitative and qualitative evaluation of the algorithm on RT dose pre-
diction on a real-world multi-organ dataset.
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Fig. 1. Overview. We use the DeepDose network [13] to convert a personalized RT
plan defined by input CT scan, beam center distance, radiological depth, source dis-
tance map, and beam shape (X1 to X5) to a voxel-wise dose prediction f̂(x). Extending
DeepDose by our novel subgroup risk-controlled prediction sets algorithm (SG-RCPS)
allows to obtain a calibrated upper and lower bound for the dose (û(X) & l̂(X)), as
well as the voxel-wise size of the interval (û(X)− l̂(X)) which serves as final uncertainty
measure.

2 Methods

The RCPS framework [1,2] ensures that a set-valued predictor T maintains a risk
below a user-specified level α with a user-defined probability of 1−δ. In regression
problems such as ours, the prediction set is often a prediction interval charac-
terised by a lower and an upper bound value. The risk R(T ) = E[L(Y, T (X))]
is defined through a loss function L tailored to the application, which encodes
a notion of consequence if the desired property is not fulfilled. In this work, we
demonstrate the application of RCPS to DL-based dose prediction and extend
the method to ensure risk guarantees for multiple subgroups.

In the following, we will first describe our dose estimation framework (Sec. 2.1).
We will then show how heuristic prediction intervals can be obtained using quan-
tile regression (Sec. 2.2). Next, we will discuss how to define the concept of risk,
and how the heuristic prediction intervals can be adjusted to control the risk
with the desired levels (Sec. 2.3). Lastly, we will describe our novel subgroup
RCPS algorithm which allows controlling the risk for multiple subgroups with-
out knowledge of the subgroup membership at test time (Sec. 2.4).

2.1 Dose Estimation using DeepDose

In order to construct a voxel-wise dose predictor f̂ we build on the previously
proposed DeepDose network [13,18], which is in turn derived from a 3D UNet
architecture [5]. DeepDose takes the beam shape, center beam line distance,
source distance, CT image and radiological depth as input X ∈ R5×W×H×D and
outputs a predicted dose f̂(X)i ∈ R for each voxel i (see Fig.1). The network is
trained with a highly accurate Monte Carlo simulation as ground truth Yi for
each voxel. For notational clarity, we will omit the index i in the following.
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2.2 Heuristic Dose Prediction Intervals using Quantile Regression

To extend the DeepDose network by the ability to provide prediction intervals,
we adopt a voxel-wise quantile regression approach [1]. Specifically, we add two
additional output channels l̃(X) and ũ(X) to estimate the voxel-wise upper and
lower bound, respectively. Similar to [1], we train the two additional network
heads using pinball losses, which allow to estimate a specific quantile. For a
general feature x, label y, and quantile β, the pinball loss is given by

Lβ(q̂β(x), y) = (y − q̂β(x))β1{y>q̂β(x)}+

(q̂β(x)− y)(1− β)1{y≤q̂β(x)},
(1)

where q̂β(x) is the corresponding quantile estimator and 1 denotes the indicator
function. We use f̂(X)−l̃(X) and f̂(X)+ũ(X) for the respective lower and upper
quantile estimators. Our overall training objective L is comprised of losses for
the upper and lower quantiles as well as the standard MSE loss for the point
prediction

L = Lα/2(l̃(X), Y ) + L1−α/2(ũ(X), Y + MSE(Y, f̂(X)), (2)

where each loss is only applied to the corresponding head. This gives our frame-
work the ability to not only output a per-voxel dose prediction f̂(X), but also a
heuristic prediction interval

T (X) = [f̂(X)− l̃(X), f̂(X) + ũ(X)]. (3)

2.3 RCPS for Radiotherapy Dose Estimation

We now show how the RCPS framework [1,2] can be used to obtain dose pre-
diction intervals that are guaranteed to keep a risk below a user-specified level.
First, we define the risk of T as the predicted interval not containing the ground
truth dose Y

R(T ) = E
[
1{Y ̸∈T (X)}

]
= Pr(Y ̸∈ T (X)). (4)

We then define new lower and upper bounds by scaling them with a non-negative
factor λ̂

l̂(X) = λ̂l̃(X) and û(X) = λ̂ũ(X). (5)

RCPS provides a strategy to choose λ̂ based on a calibration dataset such that
R(T ) ≤ α with a probability of at least 1 − δ on future test data under the
assumption of exchangeability of the test and calibration sets. We use α =
δ = 0.1 for all experiments, meaning that with a probability of at least 90%, a
minimum of 90% of the ground truth dose depositions should be contained in
the predicted dose interval.

Since the calibration data is only a random sample of the data distribution,
λ̂ cannot be chosen by simply minimising the risk on the calibration set. Rather
a point-wise upper confidence bound (UCB) R+ : Pr(R(λ)) ≤ R+ must be
obtained. This UCB accounts for the calibration sample size and the desired
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probability of the guarantee holding on future data. Following [1] we use the
Hoeffding bound [9] to define R+ as

R+(λ) =
1

nWHD

n∑
k=1

#{Tλ(Xk) ̸∈ Yk}+
√

1

2n
log

1

δ
. (6)

In the original RCPS approach, Bates et al. [2] proposed a greedy opti-
mization algorithm for obtaining the smallest possible prediction interval still
fulfilling the desired guarantees. It requires initializing λ̂ with a very large value
and reducing it until R+ falls under the desired risk level, that is,

λ̂ = min
{
λ : R̂+(λ) ≤ α

}
. (7)

This procedure produces a dose interval predictor

Tλ̂(X) = [f̂(X)− λ̂l̃(X), f̂(X) + λ̂ũ(X)], (8)

for the predicted dose that satisfies the desired risk-properties on average for
all voxels of the test data distribution. However, it does not offer conditional
guarantees for individual data subgroups. For instance, as we will show in Sec. 3
a naive application of RCPS results in the voxels along the radiation beam
violating the desired guarantees.

2.4 Risk-Controlled Prediction Sets with Multiple Subgroups

If our dataset comprises M imbalanced subgroups, using Eq. 7 to obtain λ̂ pro-
vides guarantees for the overall dataset but not for each individual subgroup.
This can lead to a systematic miscalibration of uncertainty intervals for under-
represented subgroups. If the subgroups are known at test time, this problem can
be addressed by calibrating for each subgroup separately, by using a subgroup-
specific parameter λ̂z during test time. In our RT application, we are interested
in calibrated uncertainty quantification in the area of the beam as well as the
background, which also receives small dose intensities. While we know the ab-
sorbed dose during training, we do not have direct access to this information
during testing. Hence, naive application of RCPS yields good calibration over-
all, but not in the critical area of the beam.

Therefore, we propose an extension of the risk-controlling framework for sce-
narios where the subgroup membership Z is unknown at test time. Our proposed
extension provides the same guarantees as RCPS for each individual subgroup.
That is for every subgroup Z in our dataset, it holds that, at a risk level of α,
the ground truth is included with a probability of at least 1− δ.

In order to achieve the desired guarantees we reformulate the risk conditioned
on the subgroups Z as follows

R(T ) = Pr(Y ̸∈ T (X)) = EZ [EXY |Z
[
1{Y ̸∈T (X)}

]
] . (9)



6 P. Fischer et al.

This leads to a novel subgroup risk-controlled predictions set (SG-RCPS) pro-
cedure which is summarised in Algorithm 1. Similar to the original RCPS al-
gorithm, we start off with a large λ̂ that satisfies the risk for each subgroup.
We then iteratively reduce the interval size until the first confidence bound of
a subgroup no longer satisfies the criterion1. A proof that Algorithm 1 leads to
the desired subgroup guarantees is presented in Appendix A.
Algorithm 1: Pseudocode for SG-RSPC
Input : Calibration sets (Xk, Yk)z, k = 1, . . . , nz where z = 1, . . . ,M

indicates the subgroup; in our case we have M = 3 for
foreground, background and the combined image; risk level α;
error rate δ; predictor f̂ ; heuristic lower and upper interval
predictions l̃ and ũ; initial max value λmax; step size dλ > 0

Output: Optimal interval scaling λ̂
λ← λmax
for z ← 1 to M do

UCBz ← 1
end
while UCB1 ≤ α & . . .& UCBM ≤ α do

λ← λ− dλ
for z ← 1 to M do

for k ← 0 to nz do
Lk,z ← #{Tλ(Xk,z) ̸∈ Yk,z}/WHD

end

UCBz ← 1
nz

∑nz

k=1 Lk,z +
√

1
2nz

log 1
δ

end
end
λ̂← λ+ dλ

3 Experiments and Results

3.1 Dataset

To assess the performance of our model, we trained and tested it on a dataset
containing CT data and RT treatment plans of 125 patients obtained from pa-
tients at the Department of Radiation Oncology at the University of Tübingen.
The study was approved by the institutional review board and all patients gave
written informed consent (NCT04172753).

The training dataset comprises four anatomical entities: prostate, liver, breast
(mamma), and head and neck (HN). The test and calibration datasets contained
data from the same four tumour entities as the training dataset, along with
lymph nodes, as an additional out-of-domain (OOD) entity. Testing the neural
network on an OOD entity allowed us to assess whether the calibration is able
to generalize, which is highly desirable in real-world scenarios. For each patient,
1 The code is available at https://github.com/paulkogni/SG-RCPS

https://github.com/paulkogni/SG-RCPS
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Fig. 2. Tumor-specific risks for the original calibration method (left) and our method
(right) for the total image (top row), the background radiation (middle row) and fore-
ground radiation (bottom row).

we extracted multi-leaf collimator (MLC) segments, resulting in a total of 6638
segments. For validation, we randomly selected 20 diverse prostate segments
from the dataset. For calibration, we randomly selected three random segments
from one patient for each entity. More detailed information about the data splits
is provided in Appendix B. To train the DeepDose network, each segment was
divided into patches of size 5× 32× 32× 32. The ground truth dose estimations
were generated using Monte Carlo simulations with the EGSnrc open-source
software package [7,10]. For inference, we performed predictions at the patch
level and combined them in a sliding window fashion.

3.2 Findings

We trained a DeepDose network using training data from all four entities. To
evaluate the model’s dose estimation performance we calculated the 3mm/3%
gamma pass rate (γ-PR) criterion and observed a γ-PR of 98.9%.

We then compared the two calibration strategies discussed above: RCPS, and
our proposed subgroup RCPS (SG-RCPS). We considered three subgroups: the
beam foreground and background determined by thresholding the ground truth
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Table 1. Quantitative results. Empirical risks for RCPS and SG-RCPS averaged
over all segments. Controlled risks with α ≤ 0.1 for more than 1 − δ of the cases are
highlighted in bold.

Prostate Liver Mamma HN Lymph.

Method RCPS SG-RCPS RCPS SG-RCPS RCPS SG-RCPS RCPS SG-RCPS RCPS SG-RCPS

Total image 0.415 0.0 0.898 0.0 0.620 0.0 0.089 0.0 0.094 0.0
Backgr. rad. 0.403 0.0 0.896 0.0 0.610 0.0 0.083 0.0 0.094 0.0
Foregr. rad. 0.970 0.084 0.996 0.041 1.0 0.048 1.0 0.176 0.934 0.024

dose (see Fig. 1), and the whole image. We used a target risk level of α = 0.1,
and an error rate of δ = 0.1.

Fig. 2 and Tab. 1 show the empirical risk for all segments in the test set
grouped by entity. The empirical risk for each segment is defined as proportion
of ground truth doses not contained in the predicted interval. Based on our risk
settings we expect at most 10% of the segments to fall above the specified risk
of 10%.

From Fig. 2 it can be seen that the calibration is dominated by the back-
ground class. We found that the normal RCPS algorithm only controlled for the
risk in the head & neck, and lymph node entities when considering the total
image, and the background only. However, the risk was not controlled to the
desired levels in the foreground subgroup (i.e. the beam) for any of the entities.
Interestingly, the risks for liver, prostate as well as mamma are not controlled
even in the total image. This is likely caused by a mismatch in the proportion
of background voxels in the calibration and the test set.

Our proposed SG-RCPS algorithm was able control the risk substantially
better for all anatomical areas. There were no dose predictions outside the pre-
dicted interval when considering the total image and the background only. We
note that because our algorithm estimates a single λ̂ that controls the risk for all
subgroups jointly, the estimates for the total image and background group were
more conservative. When considering the foreground (i.e. the beam) only, we
found that all entities except head & neck were risk-controlled with the desired
levels. As can be seen in Tab. 1 the empirical risk for the head & neck entity
fell slightly short of the desired levels. Notably, the risk for out-of-distribution
entity, lymph nodes, was also well controlled. Predicting risk-controlled intervals
is particularly important for the foreground, as the the beam is where the most
accurate uncertainty estimation is required.

A qualitative example of dose predictions and prediction intervals for RCPS
and SG-RCPS is shown in Fig. 3.

4 Conclusion

We have proposed subgroup RCPS, an extension of the RCPS algorithm allow-
ing to control risk for multiple subgroups with unknown subgroup membership
at test time. We validated our method on a clinical RT dataset comprising
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Fig. 3. A representative example for a liver tumor visualizing the qualitative differences
between the uncertainty intervals for the non-subgroup-specific calibration and our
method. The uncertainty intervals provided by our method are significantly wider (p <
0.001) than the ones generated by classical RCPS. All values are given in Gray (Gy).

five anatomical entities. Our results demonstrate that in case of imbalances be-
tween subgroups our method substantially improves calibration for individual
subsets. Specifically, in contrast to regular RCPS, our SG-RCPS approach al-
lows to control the risk for the beam and the background thereby increasing
safety and trustworthiness in this high-risk application. A potential drawback
of our method is that it requires a separate calibration set for each subgroup.
Additionally, this method usually yields more conservative prediction intervals.
In the future, we will apply this algorithm to datasets that include other under-
represented subgroups, such as ethnicity or gender.
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