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Abstract. Image-guided radiotherapy procedures in the abdominal re-
gion require accurate real-time motion management for safe dose delivery.
Anticipating future 4D motion using live in-plane imaging is crucial for
accurate tumor tracking, which enables sparing normal tissue and reduc-
ing recurrence probabilities. However current real-time tracking methods
often require a specific template and volumetric inputs, which is not
feasible for online treatments. Generative models remain hindered by
several issues, including complex loss functions and training processes.
This paper presents a conditional motion diffusion model treating high-
dimensional data, describing complex anatomical deformations. A dis-
crete wavelet transform (DWT) maps inputs into a frequency domain,
allowing to select top features for the denoising process. The end-to-
end model includes a masking mechanism of deformation observations,
where during training, a motion diffusion model is learned to produce de-
formations from random noise. For future sequences, a denoising process
conditioned on input deformations and time-wise prior distributions are
applied to generate smooth and continuous deformation outputs from
cine 2D images. Lastly, a temporal 3D local tracking module exploiting
latent representations is used to refine the local motion vectors around
pre-defined tracked regions. The proposed forecasting technique allows to
reduce errors by 62% when confronted to a 4D conditional Transformer
displacement model, with target errors of 1.29±0.95 mm, and mean ge-
ometrical errors of 1.05±0.53 mm on forecasted abdominal MRI.

Keywords: 4D motion · Tracking · Temporal forecasting · Diffusion
models · Motion model · Radiotherapy.

1 Introduction

In image-guided radiotherapy (IGRT), the prediction of time-resolved anatomi-
cal variations allows to accommodate for latencies in gantry positioning, caused
by the accumulation of image reconstruction, tumor tracking and beam modu-
lation steps. During therapy sessions, this implies that when a gating decision
is performed, the internal anatomy (i.e. location and overall shape) of a patient
has changed. Hence, anticipating organ motion is required to handle system la-
tencies. Current IGRT procedures (i.e. MR-linacs) allow to generate cine images
at pre-determined locations, but are constrained to 2D planes and do not offer
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real-time 3D information during dose delivery [18]. Forecasting volumes allows
to estimate the 3D tumor targets and organ movement during radiation [7].

To capture the motion of organs during radiotherapy, several previous works
have exploited recurrent neural networks for temporal prediction [23, 6, 9, 3], no-
tably LSTM’s and its different variations, which process sequential data, in-
cluding video and text [15]. Specifically, for models trained on spatiotemporal
changes, Convolutional Long-Short Term Memory [23] were a popular choice
for sequential processing. Still, issues such as vanishing gradients hamper their
adoption for long-term dependency learning, since the accumulation of errors
is common for recursive prediction. Transformers offer improved generalization
capabilities compared to recurrent methods [17], but are complex to train.

Diffusion models [8] have gained attention in medical imaging for image gen-
eration [5], 3D shape generation and multimodal synthesis for segmentation [16].
These were shown to be more stable to methods based on generative adversarial
networks (GAN), particularly for image segmentation and image reconstruction
applications, as they are more appropriate to handle important amounts of im-
ages. Furthermore, diffusion models can help to generate conditional predictions,
as shown for image synthesis processes [19] and for condition-based text gener-
ation as show in [12]. In particular, BeLFusion [2] attempted to perform motion
prediction using denoising processes performed from features in the latent do-
main. Still, several steps are required to perform feature disentanglement, but
the quality of the pre-trained encoder and decoder is a limitation.

Nonetheless, due to the challenges to integrate diffusion models to render
organ shapes from imaging data, determined from the principal modes of vari-
ation from surrounding organs and target shapes, this affects the reliability of
the generation process. Therefore, their use for motion modeling have not been
widespread. Recently, dynamic diffusion models for temporal prediction have
mostly been explored for human motion [4] but for specific trajectories, while
[10] proposed to enforce rules and physical priors to generate future motion pat-
terns. As in NLP, respiratory motion exhibits a strong reliance on sequential
data, which can be used as additional prior to condition future predicted values.

In this work, we introduce a diffusion-based prediction framework that si-
multaneously learns previous deformations from a series of input volumes and
anticipates future representations. The model integrates both the observations
and predictions of temporal deformations, learning a motion model that produces
organ displacement fields from random noise. At inference time, deformations
of the organ are forecasted from an input 2D sequence describing in-plane mo-
tions. The model obtains noisy spectrum of deformations by adding noise to the
input deformation fields. During the stepwise denoising process, an alternating
masking process is applied on the noisy spectrum, allowing to generate different
deformation sequence configurations. The process produces predictions which
are conditional to the observed sequence and reference volume. A 4D local re-
finement stage is applied from produced displacement fields, where latent vectors
are used to refine motion fields near tumors. The workflow is shown in Fig.1.
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Fig. 1. The proposed forecasting architecture of future liver deformations during image-
guided radiotherapy. During training of the diffusion model, a series of deformation
vector fields (DVF) are used as input, along with in-plane 2D images, to produce
a series of future DVF. Masked deformation observations M are embedded using the
discrete wavelength transform (DWT) and encoded with added noise at time t−1, which
is conditioned from prior sets of motion distributions pθ(ψt, t) in feature space Zf and
from the reference volume Vref . The proposed diffusion model produces deformation
fields from noisy inputs, which is subsequently used in the inference phase for future
predictions yt−1 with masked observation sequence.

2 Methods

2.1 Preliminaries

We denote here a sequence of N deformation observations, denoted as ϕ(1:N) =
[ϕ(1), ϕ(2), . . . , ϕ(N)] ∈ RN×3M , where ϕ ∈ R3M is a point in the displace-
ment vector field (DVF) at an observation n, and M is the number of samples
in the DVF. For a given series of deformation fields ϕ(1:N) with correspond-
ing 2D in-plane images I = [I1, · · · , IN ], the goal of the deformation predic-
tion model is to forecast the subsequent F DVF’s, such that ϕ(N+1:N+F ) =
[ϕ(N+1), ϕ(N+2), . . . , ϕ(N+F )] ∈ RF×3M , which when applied to a reference vol-
ume Vref , allows for tracking of the internal anatomical motion.

2.2 Frame-wise feature extractor

Using the input 2D in-plane images I, feature vectors are produced using a
temporal encoder [17], serving as visual tokens for the diffusion model predictor.
The feature encoder receives as input the concatenation of sequential images
using a constant baseline image Iref , shared between all the elements of the
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series of input images. Using the previous images Ii|Iref (i = 0, 1, . . . , N observed
images) ∈ RH0×W0×C0 , where H0,W0, C0 and H,W , C denote the baseline and
last image height, width, and channels, the module produces a series of feature
maps Zp ∈ Rm×H×W×C with m observations. Furthermore, the module obtains
the ground-truth series It+j |Iref (j = 1, 2, . . . , F ) of next image representations
used as input to the diffusion model, with the generated feature map Zf exploited
as a prior, where at inference time, only the previous frames are used as input.

2.3 Discrete Wavelength Transform

In this study, we use the Discrete Wavelength Transform (DWT) to forecast and
produce deformation fields of the liver. The DWT process obtains the temporal
characteristic of the deformation sequence, both at resting and periodic phases.
The DWT allows to generate smooth deformations across sequences, and is used
to train the diffusion model. Provided a (N + F ) deformation sequence ϕ, we
map the series into the DWT space with the function:

ψ = DWT(ϕ) = Dϕ (1)

with D ∈ R(N+F )×(N+F ) as the basis of the DWT, and ψ ∈ R(N+F )×3M repre-
senting the coefficients of the transform. Due to the nature of the DWT trans-
formation in orthogonal space, the DWT can capture the deformation sequence
through an inverse DWT, defined as iDWT:

ϕ = iDWT(ϕ) = DTψ. (2)

Due to the smooth and continuous nature of organ deformations, we only use
the first K rows of the coefficient matrices D, which simplifies the forward and
inverse transformations of the DWT by omitting the high-frequency components
of the mapping, thus reducing computational cost.

2.4 Conditional diffusion model training

The DWT mapping presented above is applied on the full deformation sequence
defined as ϕ ∈ R(N+F )×3M on the top K frequency data in order to generate
ψ0 ∈ RK×3M , with ψ0 = ψ. The spectrum with added noise obtained at time t
is determined by a new parameterization of ψ, so that ψt =

√
αtψ0 +

√
1− αtp

with α as the variance parameters that are pre-defined before training, where
αt =

∏t
i=1 αi, αi ∈ [0, 1] and p follows a normal Gaussian distribution.

Then for the noise prediction network, we use a series of N attention blocks
(Fig. 1) with linear layers at the beginning and end of the network, producing at
each timestep t, a predicted noise defined by pθ(ψt, c, t), where the parameters
are optimized using the following noise prediction loss term:

L = Ep,t

[∥∥p− pθ(ψt, c, t)
∥∥2]. (3)
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This loss function is the primary objective term for the proposed pipeline to
train the diffusion deformation model in an end-to-end fashion, through a min-
imization of the loss L that estimates the difference between the expected and
observed distributions. The loss is augmented with a conditional parameter c
that describes the context of the anatomical image Vref , and is associated with
features maps Zf , obtained from previous observations on the 2D cine images.

2.5 Masked observation inference

To infer a sequence of future deformations, a series of previous observations is
provided to the trained model, where T denoising steps are used to generate
the series of deformations. We introduce here a method producing a sequence
of observations which are padded with future observation data. This is then
projected to the DWT space (denoted as ψ), which is added with noise in order
to produce a noisy spectrum defined at timestep t − 1. Here, prediction are
defined as ψd

t−1 =
√
αt−1ψ +

√
1− αt−1z, with z following a 0-centered normal

distribution of standard deviation σt when t = 1, and z = 0 in other cases. Once
noise is added, we apply the following conditional denoising procedure:

ψd
t−1 =

1
√
αt

(
ψt −

1− αt√
1− αt

pθ(ψt, c, t)
)
+ σtz (4)

that produces the prediction ψt−1 from ψ. We use a masking mechanism, where
given the diffusion model, the noisy observation and denoised forecasted spec-
trum follow a similar distribution. Hence, both spectrum are re-projected to the
temporal space using the inverse iDWT, combined with a fusion technique:

ψt−1 = DWT[M⊙ iDWT(ψn
t−1) + (1−M)⊙ iDWT(ψd

t−1)] (5)

with M being the masking vector of (N + F ) dimension, allowing to mask out
randomly observations and predictions, and ⊙ representing the Hadamard op-
eration which applies the masking vector to the deformation observations.

2.6 Model-based tracker

Finally, to improve tumor tracking given the predicted DVF by the diffusion
model, a condition-based projection operation using the diffusion parameters is
applied [17]. It computes a weight map within a localized tumor target location
(defined on the baseline reference image prior to IGRT), refining the global DVF.

Provided a tumor location (xref , yref , zref ), a 3D region of interest is deter-
mined around the location. We use the region of interest (ROI) to extract the 3D
deformation field forecasted from the diffusion-based deformation model (ϕROI),
from which the weighted map (Sx, Sy, Sz) is generated for the components in
all 3 axis, such that (ϕROI

x , ϕROI
y , ϕROI

z ).
For any timepoint, a refined 3D DVF associated to a specific plane i is de-

fined, such that (ϕ̂ROI
i ) is obtained by combining all multiplied elements of a pre-

dicted motion field (ϕROI
i ) with parameters (S), i.e., ϕ̂ROI = ∥(Sx ×ϕROI

x , Sy ×
ϕROI
y , Sz × ϕROI

z )∥. Attention maps for a plane i is obtained with [14]:

Si = σ2(σ1(Wcc+Wϕϕ
ROI
i )Ws) (6)
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with c representing the latent representation of the deformation network, σ1 and
σ2 the ReLU and sigmoid activations, while Wc, Wϕ and Ws are linear transfor-
mations. The objective when training the tracking module is the minimization
of the dissimilarity between predicted ROI and the ground-truth location of in-
terest, in addition to reducing the difference in the prediction and measures from
deformation fields around the tumor target area.

3 Results and discussion

A 4D-MRI dataset of 30 radiotherapy patients was used in this study, each
providing consent under an IRB-approved protocol. Each patient had 20-minute
acquisitions which were obtained free-breathing, with a series of sagittal planes
obtained on a 3T Philips Ingenia scanner, with a 2D T2-weighted balanced turbo
field echo sequence. The acquisitions of the in-plane frames were centered around
the liver lobe and navigator slices were made following an interleaved scheme and
subsequently sorted to produce time-resolved 4D datasets [20] with a spatial
resolution of 1.7x1.7 mm2, 3.5 mm slice spacing, and a temporal resolution of
350ms. Each patient had 85 separate sequences with an associated 2D navigator
exhibiting various motion frequencies and amplitudes, producing variations in
the inter-cycle motion, thus improving model robustness. Providing a series of
2575 volumes per patient across multiple cycles (totaling close to 42000 total
volumes), we used a leave-one-out validation scheme, where 29 patients were
used for training the remaining case for testing. In this work, DVF between
pairs of volumes were pre-computed using a VoxelMorph [1] model trained on
liver MRI. This model was used to register liver images between several phases,
demonstrating robustness to breathing patterns and deformations [18].

The dataset included between 240 and 400 breathing cycles across the patient
acquisitions. We trained the diffusion model on the 4D-MRI dataset using a 1000-
step diffusion model and use a 100-step sampling procedure with DDIM [21],
which fine-tunes the model on the trained model. Variance scheduling is used
here by the Cosine scheduler for the integration of DWT [13]. The feature encoder
is composed of a stack of convolutional layers with channels of [64, 128, 256] for
the in-plane image forecasting. We used a 8-layer network for the noise prediction
module, including linear transformation blocks for the initial mappings, and 4-
layer linear transformation modules. Here, K = 15, the dropout rate is 0.2 and
the latent dimensionality is 512. The parameters of the network were optimized
using AdamW with a learning rate of 10−3. For model fine-tuning, the rate was
adapted to 10−5 and progressively reduced after 3 epochs without improvements
in the validation loss. Training was done in PyTorch with a batch size of 10, on
a NVIDIA Tesla A100-80GB GPU.

We first evaluated the model’s prediction capability based on landmark lo-
calization errors throughout different stages of the respiratory cycle. The tumor
target area was identified from a trained radiologist. Table 1 presents the target
registration errors from the tumor target regions, comparing the proposed model
the recent spatiotemporal predictive methods, including MotionDiff [22], LMC
[11] and a Transformer-based approach [17], which were trained with similar
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Table 1. Target registration errors (TRE) (in mm) from the leave-one-out cross-
validation, compared to state-of-the-art methods and ablation experiments. Metrics
were extracted at different horizons (h), with 350ms intervals. Results capture the per-
formance across all respiratory phases. Results are mean ± std [P90]. DiffM: proposed
diffusion model. C: Conditional prior. MO: Masked observation. T: Tracker module.

Method TRE (h = 350ms) TRE (h = 700ms) TRE (h = 1050ms)

Initial motion 7.28±3.59 [8.87] 7.08±3.32 [8.1] 6.77±3.26 [8.17]

LMC [11] 4.55±2.13 [6.36] 4.49±2.07 [6.31] 4.38±2.02 [6.27]

MotionDiff [22] 3.63±2.28 [5.95] 3.60±2.19 [6.02] 3.55±2.14 [5.92]

Trans4DMoco [17] 2.13±1.76 [3.66] 2.11±1.73 [3.61] 2.08±1.72 [3.74]

DiffM 2.30±1.71 [3.72] 2.28±1.74 [3.62] 2.25±1.82 [3.60]

DiffM+C 1.87±1.32 [3.21] 1.85±1.31 [3.26] 1.82±1.29 [3.29]

DiffM+MO 1.83±1.31 [3.25] 1.84±1.30 [3.31] 1.80±1.28 [3.30]

DiffM+C+MO 1.57±1.23 [2.85] 1.50±1.21 [2.81] 1.49±1.23 [2.82]

DiffM+C+MO+T 1.31±1.02 [2.17] 1.29±0.93 [2.14] 1.28±0.92 [2.11]

conditions to the proposed model. Due to the fact the generated volumes had
a temporal resolution of 350ms, the total horizon for prediction was 1050ms.
The table also presents results from ablation experiments, where the conditional
factor (C), masked observation (MO) and the final tracker (T) components were
each assessed. Experiments demonstrate a significant decrease in TRE errors
when integrating all proposed components (C, MO and T), with overall errors
of 1.29±0.95, when compared to the baseline diffusion model. Furthermore, it is
crucial to note that the tracking regions fall outside the in-plane images. In fact
in several scenarios, a decrease in the mean error will be observed as the tem-
poral horizon increases. Since metrics are extracted from volumes, predictions
tend to be similar where the progressive error increase will not be apparent.

The model yielded geometrical errors, measured between predicted and GT
motion fields based on the entire anatomy, of 1.05 ± 0.53mm, compared to
1.54 ± 0.96mm for a Transformer-based approach[17]. Fig. 2 presents the evo-
lution of the overall geometrical accuracy of the prediction models across the
different points in the respiratory cycle. Finally, Fig. 3(a) illustrates sample
tracking results from 2 test cases, obtained around the tumor target area, in
contrast to the forecasted tumor target, while Fig. 3(b) describes motion trajec-
tories with irregular patterns. The proposed approach produces images similar
to the ground-truth, where one can notice that the proposed model produces
predictions close to the actual MRI acquisitions. Furthermore, a decrease in
the errors can be seen when including the tracker method, as opposed to other
predictive models based on the Transformer-based approach.
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Fig. 2. Series of predicted 4D-MRI sequences and geometrical error maps (in mm)
obtained with the proposed and Transformer-based [17] predictors across a respiratory
cycle. The dashed lines describe the diaphragm position across the breathing cycle.

(a) (b)

Fig. 3. (a) Forecasted volumes and local tumor locations from the diffusion model with
the local tracker, with comparative models on two sample patients (columns). Tumor
targets are highlighted in red boxes, green cross-hairs show real tumor locations, while
predictions are shown in cyan. (b) Ground-truth and predicted 3D motion trajectories
across several breathing cycles.

4 Conclusion

In this paper, we proposed a forecasting model anticipating future organ de-
formations during IGRT procedures from free-breathing cine MR images of the
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liver. The diffusion model captures the main deformation modes from a discrete
wavelength transform, while improving model generalizability with a masking
mechanism that allows to augment the observational sequences of DVF. Smooth-
ness consistency is integrated within the diffusion model’s training process as a
conditional prior which allows to produce anatomically consistent sequences. The
forecasting model yielded results comparable to ground-truth 4D-MRI observed
from separate free-breathing sequences. Conditional diffusion models capture the
anatomical variations in organ appearance, thus helping to adapt dose delivery
during abdominal RT sessions. This proof of concept shows sufficient accuracy
can be achieved in comparison to previous methods, but with higher inference
times. Latent Consistency Models (LCMs) is a promising avenue to produce im-
ages around 150ms (acceptable for IGRT), as opposed to 10 seconds with vanilla
Stable Diffusion. Future studies will consist of assessing the technique’s predic-
tive robustness and accuracy in the context of a multi-center study and apply
the model for online motion management.
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