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Abstract. Topological accuracy in medical image segmentation is a
highly important property for downstream applications such as network
analysis and flow modeling in vessels or cell counting. Recently, sig-
nificant methodological advancements have brought well-founded con-
cepts from algebraic topology to binary segmentation. However, these
approaches have been underexplored in multi-class segmentation scenar-
ios, where topological errors are common. We propose a general loss
function for topologically faithful multi-class segmentation extending the
recent Betti matching concept, which is based on induced matchings of
persistence barcodes. We project the N -class segmentation problem to
N single-class segmentation tasks, which allows us to use 1-parameter
persistent homology, making training of neural networks computation-
ally feasible. We validate our method on a comprehensive set of four
medical datasets with highly variant topological characteristics. Our loss
formulation significantly enhances topological correctness in cardiac, cell,
artery-vein, and Circle of Willis segmentation.7
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1 Introduction

Topological correctness is crucial for many downstream tasks, such as blood flow
modeling or cell counting. Modern segmentation networks achieve high pixel-wise
accuracy but often cannot preserve important topological features [1, 10]. Recent
? Corresponding author. a.berger@tum.de
7 The code is available at github.com/AlexanderHBerger/multiclass-BettiMatching
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Fig. 1: Top: image, ground truth, and exemplary segmentation of the cardiac
dataset. Bottom: ground truth (left) next to the segmentation (right), pairwise
for every class. With our multi-class Betti-matching formulation, we match con-
nected components (dim-0) and cycles (dim-1) in each individual class. Matched
features in dim-0 and dim-1 are colored in a checkerboard pattern and have col-
ored feature cycles, respectively. All classes’ matched and unmatched features
guide our loss function for multi-class topology-preserving segmentation.

works addressed this issue via a variety of methods such as postprocessing [3,
14], injecting topological priors during training [3–5, 7], or topology-aware loss
functions [8–10, 20, 22, 24]. These methods come with varying degrees of gener-
alization capabilities and theoretical guarantees. For example, some persistent
homology-based losses cannot guarantee the spatial matching of topological fea-
tures [4, 10]. Recently, the Betti matching loss was proposed as a general loss
function to train binary segmentation networks with strict topological guaran-
tees and correct spatial alignment of topological features [24]. Despite these
successes, the realm of topology-preserving multi-class segmentation has been
under-explored. In this work, we fill this gap by proposing a generalizable multi-
class segmentation loss extending the Betti matching concept to multi-class set-
tings. Based on popular methods, specifically, clDice [22], and HuTopo [10], we
establish other topology-aware multi-class baselines. Furthermore, we introduce
a weighting term based on topological structures that can improve the topo-
logical correctness depending on the dataset characteristics. In experiments on
four topologically variant datasets, we demonstrate our method’s utility and
outperform all baselines.

Related works A plethora of methods have emphasized the importance of
topologically correct segmentation in medical imaging. These methods can be
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assigned to three categories. Firstly, post-processing frameworks that aim to fix
topological errors of preliminary segmentations [14, 19, 26]. These approaches do
not integrate with end-to-end training of neural networks. The second category
uses fixed topological priors during training or post-processing [3]. Clough et
al. [4] follow an approach where they defined the expected topology using Betti
numbers on which they computed a loss term. Gupta et al. [7] apply physio-
logical priors to segment various medical structures. Other studies use similar
approaches for coronary artery segmentation [28, 29]. However, these methods
do not generalize to other tasks and are only applicable when every sample
for the segmentation task has the same topological features. The last category
contains topologically faithful loss functions in which a topological loss is com-
puted without using task-specific knowledge. These methods are often based on
skeletonization for tubular structures [22, 20, 16]. In a foundational work, Hu et
al. [10] proposed using a loss function for image segmentation, which minimizes
the squared distance of matched points in persistence diagrams of dimension
1. However, this method does not guarantee that matched structures are spa-
tially related in any sense, which has a significant negative impact on training
[24]. A recent work overcame the limitations of these methods and showed that
induced matchings can achieve a spatially correct matching between barcodes
in a binary segmentation setting with formal guarantees [24]. Other approaches
applied homotopy warping to identify critical pixels and measure topological
differences between images [9, 11] or utilized discrete Morse theory to compare
critical topological structures [8]. Such loss functions are beneficial because they
do not require prior knowledge, they can be generalized across tasks and can be
incorporated into end-to-end training. However, research regarding such general,
homology-based loss functions in multi-class settings has been limited.

2 Method

This work presents a loss formulation that captures topological errors in multi-
class segmentation masks. Our loss can be used to train arbitrary segmentation
networks in an end-to-end fashion. We utilize persistent homology to capture
topological features at multiple scales and generalize homology-based loss func-
tions to multi-class segmentations.

Overview of persistent homology for image segmentation. Let x 2
RW⇥H be a grayscale image, y 2 {0, 1}N⇥W⇥H its segmentation in N mutually
exclusive classes, and ŷ 2 [0, 1]N⇥W⇥H a predicted likelihood map for each class
with

P
N

c=1 ŷc,i,j = 1. In a binary segmentation setting, the predicted likelihood
map ŷ 2 [0, 1]W⇥H can be seen as a function ŷ : KW⇥H ! [0, 1] on a cubical
grid complex KW⇥H (see [24]) and its sublevel filtration Kt = ŷ�1((�1, t]) as
a model for its topology. Since the sublevel filtration depends only on one pa-
rameter t 2 R, the persistent homology of this filtration forms a 1-parameter
persistence module, and its barcode decomposition can be used as a descrip-
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tor for the topology of the prediction. For a thorough theoretical description of
persistent homology for binary image segmentation, we refer the reader to [24].

Single-class loss functions for multi-class segmentations. In a multi-class
segmentation task, the predicted likelihood map ŷ 2 [0, 1]N⇥W⇥H ! [0, 1] cor-
responds to a function ŷ : KW⇥H ! [0, 1]N . Since its sublevel filtration K(tn) =
{x 2 KW⇥H | ŷ(x)  (t1, . . . , tN )} depends on N parameters t1, . . . , tN 2 R,
its persistent homology forms an N -parameter persistence module. The com-
plexity of computing descriptors for N -parameter persistent homology makes it
infeasible to train segmentation networks with such a setup.

In order to circumvent this problem, consider a multi-class segmentation
network f : RW⇥H ! [0, 1]N⇥W⇥H and denote by

pc : [0, 1]
N⇥W⇥H ! [0, 1]W⇥H , (ŷn,i,j) 7! (ŷc,i,j) (1)

the restriction to the c-th channel. Then fc := pc � f can be seen as the so-
lution to a single-class segmentation task predicting the likelihood of a pixel
being within class c. This way, we can break down the multi-class segmentation
task with N classes into N single-class segmentation tasks, allowing us to apply
single-class segmentation loss functions. Thus, any single-class segmentation loss
L : [0, 1]W⇥H ⇥ {0, 1}W⇥H ! R can be extended to a multi-class segmentation
loss by summing the individual losses of each channel:

L : [0, 1]N⇥W⇥H ⇥ {0, 1}N⇥W⇥H ! R, (ŷ, y) 7!
NX

c=1

L(pc(ŷ), pc(y)) (2)

Considering each channel c individually and computing the barcode of its sub-
level filtration corresponds to slicing the N -parameter persistence module along
the line

{t 2 RN | tc = t, tn = 1� t for n 6= c} (3)

to a 1-parameter module and computing its corresponding barcode decompo-
sition, which scales the computational complexity linearly with the number of
classes N compared to a binary setting. Therefore, the total computational com-
plexity is dominated by the barcode computation that scales cubically with the
number of pixels [24]. We utilize the efficient implementation for barcode compu-
tation presented in [23] and provide runtime information in the supplement. No-
tably, the presented formulation naturally extends to other topology-preserving
losses, which allows us to extend and implement other binary topology-preserving
losses to our setting and compare their generalizability, which we do in the ex-
periment section. Furthermore, they extend to topological metrics, especially the
Betti matching error [24].

Weighting. The Betti matching loss lBM is based on the induced matching of
persistence barcodes µ(L,G) (as described in [24]), which consists of matched
and unmatched features between ground truth and prediction (as depicted in Fig.
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1). Therefore, lBM can be decomposed into one loss component for matched lm
BM

and one for unmatched lu
BM

features, respectively. lm
BM

reinforces topological fea-
tures that are correctly predicted by the network, and lu

BM
penalizes topological

features that are predicted by the network but do not exist in the ground truth.
In [24], these components are implicitly weighted equally. However, in a multi-
class setting, with varying numbers of classes and topological features, one loss
component can dominate the other, which may deteriorate performance (see Sec.
4). Hence, we propose a weighting of these components with the parameters �m

and �u. Lastly, we combine our final multi-class topological loss with a standard
pixel-based loss function (e.g., Dice) to the final loss function:

ltotal = ↵ · (�m · lm
BM

+ �u · lu
BM

) + lDice (4)

3 Data and Experimentation

Datasets. We evaluate our method on four different, public multi-class seg-
mentation tasks. While all data is from different modalities, we choose tasks
where topological correctness is a major objective (especially for downstream
applications) and has proven to be challenging with traditional methods. For
training/validation/test splits and further details, please see the Supplement.

First, in the Automated Cardiac Diagnosis Challenge (ACDC) challenge
dataset [2], the task is cardiac segmentation, i.e., segmenting the myocardium
and the left and right ventricles in 2D short-axis slices of Cardiac Magnetic Reso-
nance (CMR) scans. Here, pathological samples often lead to failure modes that
exhibit topological errors [3]. We use each slice, including the apex and base,
to get data points with varying topological features. Second, we use a publicly
available cellular and subcellular electron microscopy (EM) dataset (Platelet)
with six classes (cell, mitochondrion, canalicular channel, alpha granule, dense
granule, and dense granule core) [6]. Third, we test our method on artery-vein
classification in OCTA images with the OCTA-500 dataset [15]. Last, we test
our model on Circle of Willis (CoW) segmentation in Magnetic Resonance An-
giography (MRA) scans with 15 vessel components as classes. The CoW has
hypoplastic and absent components across different subjects, making correct
segmentation challenging [27]. We project the MRA scan and the label to a 2D
image and segmentation mask.

Baselines. We employ three baselines against which we evaluate the perfor-
mance of our loss formulation. All baselines enable end-to-end training and are
independent of the used network. First, the generalized Dice loss [25], which is
still one of the most frequently used loss terms in biomedical image segmentation
due to its inherent class balancing properties [17]. Thus, we choose the Dice loss
as a standalone baseline. Second, we combine the Dice loss with the (multi-class
extended) centerline Dice (clDice) loss [22]. clDice is especially effective for seg-
menting tubular structures. Lastly, we develop an additional baseline where we
combine the Dice loss with a multi-class extension of the HuTopo loss [10] via
the multiclass generalization introduced in Section 2.
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Metrics We evaluate segmentation performance with a comprehensive set of
topology and pixel-wise scores. Specifically: the Betti matching error, Betti num-
ber errors, Dice, and clDice. The Betti matching error (BM) is the most accu-
rate indicator of faithful topological segmentations [24]. All metrics are averaged
across all foreground classes without weighting.

Training and model selection We train a U-Net architecture [21] with resid-
ual units from scratch. We use the Adam optimizer [12], a fixed learning rate,
and sigmoid scheduling for ↵ (see Supplement). Note that our loss formulation
is independent of the underlying network architecture. We perform 5-fold cross-
validation and evaluate on an independent test set. We perform a random hy-
perparameter search with 50 runs on each of the splits and select the model that
has the highest performance S on the validation set with S being defined as a
balanced performance metric of pixel-wise accuracy and topological faithfulness:

S = Dice+

✓
1�min

✓
1,

lBM

�0 + �1

◆◆
(5)

where �i is the Betti number in dimension i. We report the mean performance
and standard deviation on the independent test set across the five data splits.
Please refer to the supplement for hyperparameters. We use the paired t-test
between our model and each baseline to evaluate statistically significant perfor-
mance (p-value < 0.05) improvements.

4 Results

Our results comprehensively demonstrate that our proposed multi-class segmen-
tation loss outperforms all baselines across all datasets in Betti matching errors.
Further, we outperform all baselines in Betti number errors 0 and 1 as well as
clDice in the Platelet, TopCoW, and ACDC datasets; see Table 1. Even in the
non-topology-aware Dice score, our method performs on par with the baselines
across most datasets. Overall, we find that the (multi-class extended) HuTopo
baseline [10] does not generalize well to the multi-class setting. We attribute this
to an amplification of the possible incorrect matchings of persistence features as
described in Stucki et al. [24]; i.e., the matched features do not correspond spa-
tially. Further, we find specific results for the individual datasets:

ACDC. This dataset exhibits a mostly regular structure where the three classes
have one unique topology, i.e., the Myocardium forms one connected component
and mostly one cycle. Achieving good volumetric performance is rather simple;
all methods show similar, high performance in Dice and clDice; however, our
method still significantly improves the Betti matching error and the Betti num-
ber errors. Our method is especially beneficial in the irregular (e.g., basal) slices.
There, the structures do not have their typical topology, making approaches
based on topological post-processing unsuitable.
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Table 1: Quantitative results. We show the performance of our multiclass Betti
matching loss against multiple other topology-aware losses that we adapted to
the multiclass segmentation setting. Best performances indicated in bold, sta-
tistical significance underlined (p-value < 0.05).

Dataset Loss Dice " clDice " BM # B0 # B1 #

ACDC

Dice .868±.023 .636±.004 0.130±0.014 0.094±0.012 0.032±0.006

ClDice .871±.020 .629±.009 0.380±0.226 0.115±0.014 0.261±0.217

HuTopo .862±.005 .634±.004 0.219±0.049 0.164±0.044 0.049±0.010

Ours .862±.008 .641±.005 0.064±0.007 0.038±0.005 0.022±0.004

Platelet

Dice .685±.015 .548±.009 1.289±0.147 0.643±0.072 0.280±0.045

ClDice .682±.016 .544±.011 4.682±2.800 1.053±0.293 3.238±2.474

HuTopo .635±.042 .517±.018 1.420±0.408 0.684±0.218 0.301±0.136

Ours .696±.019 .564±.012 0.978±0.126 0.483±0.068 0.191±0.024

OCTA-500

Dice .829±.006 .567±.004 34.258±2.929 11.825±2.518 0.018±0.019

ClDice .794±.013 .560±.005 23.510±0.498 6.942±0.367 0.008±0.011

HuTopo .787±.028 .554±.009 28.285±3.871 8.255±1.877 0.035±0.021

Ours .798±.013 .556±.007 17.950±0.567 9.670±0.667 0.055±0.021

TopCoW

Dice .625±.148 .624±.145 1.791±1.176 1.495±1.114 0.042±0.021

ClDice .685±.102 .693±.109 1.043±0.803 0.835±0.713 0.032±0.017

HuTopo .670±.138 .675±.141 1.442±1.668 1.207±1.585 0.042±0.025

Ours .717±.021 .725±.025 0.773±0.304 0.616±0.231 0.027±0.017

Platelet. In this dataset, the aim is to segment round objects where the topol-
ogy is described by "inclusion," e.g., a mitochondrion is always inside a cell
segment. Our method is superior to all baselines across all metrics. The HuTopo
and clDice baselines perform especially poorly, which we attribute to the large
image size (200⇥200 pixels), making HuTopo’s spatial mismatch more prevalent,
and the lack of tubular structures, negatively impacting clDice performance.
Qualitatively, we observe that the baselines often merge individual structures.

OCTA-500. Here, the Dice loss results in the best Dice score, which is in con-
trast to the other experiments. We hypothesize that the Dice loss is more robust
against the dataset’s annotation scarcity [18, 13]. However, our loss significantly
decreases the BM error compared to all baselines, including the Dice loss. The
qualitative examples show that all baselines suffer from a large number of dis-
continuous vessel segments, which can be critical for downstream applications.

TopCoW. Our method improves performance across all metrics. This dataset
is challenging because of its 13 distinct classes, which partially overlap in the 2D
projection. In this setting, all topology-aware losses perform more robustly than
the Dice loss. We conclude that in such challenging settings, topological methods
are especially useful. Furthermore, our method shows by far the lowest standard
deviation, further emphasizing its robustness compared to other methods.
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Fig. 2: Qualitative results on ACDC (a), Platelet (b), OCTA-500 (c), and Top-
CoW (d) dataset. Our method improves topological correctness in all multi-class
segmentation tasks. We indicate some topological errors with black arrows.

Ablation on weighting. In an ablation, we study the effect of our proposed
weighting concept, see Section 2. We find that topological weighting can strongly
affect the model’s performance regarding the Betti matching error while being
robust in terms of pixel-wise accuracy, see Fig. 4. Here, we study the OCTA-500
dataset and show that a low weight for the loss of matched topological features
lm
BM

(and thereby a relatively higher weight for the loss of unmatched topolog-
ical features lu

BM
) drastically improves topological performance while having a

negligible effect on Dice. We attribute this observation to the predominance of
topological features in dimension 0 in the hierarchically structured vasculatures
in OCTA images. Note that other datasets do not follow this trend indicating
that the weighting parameter must be specifically tuned for the used dataset.

5 Conclusion

Our study introduces a novel loss for multi-class image segmentation, extending
the Betti matching concept to preserve topology. By decomposing the N -class
problem, we circumvent the use of multi-parameter persistent homology, facili-
tating neural network training. Our empirical findings are three-fold. First, we
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Fig. 3: Betti Matching error (left) and Dice score (right) with varying �m

find that our proposed generalization can successfully extend topology-aware
losses to multiclass problems. Second, we provide strong empirical evidence that
our loss does not impede pixel-wise accuracy and significantly improves topo-
logical accuracy. Finally, we find that our loss function consistently outperforms
other topology-preserving baselines across several datasets, rendering it suitable
for topologically critical applications.
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