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Abstract. Accurate segmentation in low-dose CT scans remains a chal-
lenge in medical imaging, primarily due to the high annotation costs.
This study introduces LUCIDA, a Low-dose Universal-tissue CT Image
Domain Adaptation model. LUCIDA operates under an unsupervised
framework, eliminating the need for LDCT annotations. A novelty of
LUCIDA lies in its integration of the Weighted Segmentation Recon-
struction (WSR) module with a Fourier-based UNet (F-UNet), which
not only establishes a linear relationship between prediction maps and
ROI-based reconstructed images but also enhances segmentation accu-
racy through frequency domain adaptation of LDCT images. LUCIDA
improves the accuracy of prediction maps, facilitating a new domain
adaptation framework. Through extensive evaluation experiments, LU-
CIDA has demonstrated its effectiveness in accurately recognizing a wide
array of tissues, significantly outperforming conventional methods. Addi-
tionally, we present the LUCIDA Ensemble model, which achieves perfor-
mance comparable to supervised learning models in organ segmentation,
capable of recognizing up to 112 tissue types.

Keywords: Low-Dose Computed Tomography · Universal Model · Seg-
mentation · Domain Adaptation

1 Introduction

In Positron Emission Tomography/Computed Tomography (PET/CT) and other
disease screening applications, accurate segmentation from Low-Dose CT (LDCT)
is pivotal for precise disease diagnosis and formulating effective treatment plans.
⋆ Corresponding author: Zhaoheng Xie (xiezhaoheng@pku.edu.cn)
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Despite advancements in imaging technology, LDCT images lack a universal seg-
mentation model that can identify a broad spectrum of human tissues. Manual
annotation of all tissues in LDCT images requires substantial costs and resources.
Therefore, leveraging extensively annotated NDCT datasets (source domain) for
application in LDCT (target domain) represents a cost-effective unsupervised
domain adaptation (UDA) task.

Existing UDA methods like CycleGAN [25], SIFA [3], FVP [19], and AIGAN
[6] have shown promise in UDA and LDCT denoising. However, GAN-based
UDA methods [3, 6, 25] often suffer from poor stability, adversely affecting the
adaptation performance in high-accuracy segmentation. High-accuracy segmen-
tation has essentially been achieved in NDCT, with existing methods averaging
over 90% Dice score.

In response to these challenges, we introduce Low-dose Universal-tissue CT
Image Domain Adaptation (LUCIDA). LUCIDA operates under an unsuper-
vised protocol, capable of recognizing 112 tissue types in LDCT without the
need for annotations. The core feature of LUCIDA is the Weighted Segmenta-
tion Reconstruction (WSR) module, establishing a linear relationship between
prediction maps and ROI-based reconstructed images. By enhancing the quality
of reconstructed images, LUCIDA improves the accuracy of prediction maps,
constituting a novel UDA framework. Specifically, LUCIDA employs a Fourier-
based UNet (F-UNet) for frequency domain adaptation of LDCT images, opti-
mizing F-UNet parameters by minimizing the error between reconstructed and
input images. Moreover, we supplement the NDCT dataset with seven additional
categories: subcutaneous fat, visceral fat, skull, filler, radius, sternum, and other
muscles, resulting in a comprehensive dense label dataset. The training code is
already available publicly, and both the well-trained checkpoint and enriched
annotations will be released soon.

2 Related Works

2.1 Low-dose CT Denoising

A typical drawback of low-dose CT is image noise due to a weaker X-ray flux.
Numerous denoising methods have been developed to address this ill-posed prob-
lem and improve low-dose CT image quality. The objective of denoising methods
is to align LDCT with NDCT data, which can be seen as a domain adaptation
in LDCT. Deep learning (DL) methods have shown superior performance in this
task [1, 4, 5, 8–11,14,23].

Several DL-based methods adopt mean square error (MSE) loss function
to train the model, such as the basic convolutional neural networks [5], UNet-
based denoising network [14], residual encoder-decoder convolutional neural net-
works (RED-CNN) [4], and deep cascade residual networks (DCRN) [9]. Besides,
there are many GAN-based denoising methods, such as dual-domain UNet-based
GAN [11], Wasserstein GAN [1, 8], and CycleGAN [23]. Attention-encoding In-
tegrated Generative Adversarial Network (AIGAN) [4] achieves the state-of-the-
art performance on commonly used metrics (PSNR, SSIM and FSIM) among
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UNet [16], CycleGAN [23], CycleWGAN [24], REF-CNN [4]. Moreover, diffusion
models have been adopted in LDCT denoising task. Diffusion model overcomes
the limitations of GANs by generating more diverse and less blurry images [13].
Dn-Dp [15] leverages diffusion priors and requires only normal-dose CT images
for training.

In this paper, we evaluate denoising methods by the performance of down-
stream task. To the best of our knowledge, there is limited research focusing on
the improvement of downstream task performance through domain adaptation
in the context of LDCT denoising. This gap underscores the novelty of our ap-
proach. This dual focus on denoising and task performance could offer a new
direction for future research in medical imaging.

2.2 Domain Adaptation

LDCT denoising task is a subtask of medical Domain Adaptation. In addition to
common domain adaptation (DA) methods like CycleGAN [23] and AIGAN [6],
other noteworthy approaches in the medical domain include MSGAN [18] and
SIFA [3]. MSGAN [18] achieves higher-quality medical image synthesis through
dense multi-scale feature connections. SIFA [2] attemptes to align feature-level
and used the same encoder for image transformation and segmentation tasks,
resulting in a synergistic effect between image alignment and feature alignment.

Spectral analysis via Fourier transform plays a crucial role in domain adap-
tation. Recent studies [21, 22] have highlighted that the amplitude component
of an image’s Fourier transform is more reflective of its style, whereas the phase
component predominantly carries semantic information. Methods like FDA [22]
adjust the amplitude of low-frequency components in source images to match
those in the target images.

3 Methodology

Give an NDCT dataset (source domain) (Xs, Ys), where Xs and Ys are the NDCT
images and corresponding annotations. The target domain is LDCT dataset
without annotations (Xt). We denote the segmentation model trained on NDCT
dataset as S, which is commonly referred to as the “source model” in the UDA
context.

3.1 Dense Label Annotation And Source Model Training

We employ the TotalSeg dataset [20] as NDCT dataset, which includes 104
annotated tissue masks. However, it does not achieve dense annotation of all
tissue structures for each voxel, as shown in Figure 1. In segmentation tasks,
“dense labels" refer to annotations for every voxel in the image, assigning each
one to a specific class or category.

Expanding upon the Ys, we annotated labels for subcutaneous fat, visceral
fat, skull, filler, radius, sternum, and additional muscle group. We adopt the
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Fig. 1. The overview of LUCIDA framework

AI-based pre-segmentation annotation method protocol [20]. Furthermore, we
implemented incremental label annotation using a rule-based label fusion.

A preliminary segmentation model was trained after manually annotating
expanded labels for the initial 5 cases. Its predictions were merged with the
existing labels based on rules, followed by a radiologist’s manual refinement if
necessary. The retraining of the segmentation model was conducted following
the review and refinement of 5 cases, 20 cases, and 100 cases, respectively.

The rule-based label fusion is defined as:

y∗(v) =


y(v) if y(v) ̸= bg
ŷ(v) if y(v) = bg & ŷ(v) ̸= bg,
bg if y(v) = bg & ŷ(v) = bg

(1)

where y is the original annotation and ŷ is the predicted annotation. bg is ab-
breviation for “background", and v refers to voxel index within an annotation
y(v). According to Equation 1, we combine y and ŷ to obtain y∗. The y∗ then
undergoes manual review and refinement to yield the final annotation result with
dense label.

After supplementing the annotation to dense labels, we employ binary cross
entropy (BCE) and the Dice Similarity Coefficient (DSC) loss to train the
NDCT-Segmentor (source model) S.

3.2 Weighted Segmentation Reconstruction

The LUCIDA framework includes a simple yet intriguing and effective Weighted
Segmentation Reconstruction (WSR) module. This is a linear perceptron com-
posed of trainable weights and biases. As shown in Step 2 of Figure 1, the source
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model Ss identifies 112 types of tissues in the NDCT input xs, accomplishing
dense segmentation of the CT image and yielding 112 prediction maps.

LUCIDA uses a simple linear mapping to reconstruct the CT image using the
prediction maps, achieving a ROI-based reconstruction process that strictly relies
on anatomical regions. In this framework, the quality of the reconstructed image
highly depends on the prediction maps, in other words, the performance of the
segmentation model. Therefore, we could optimize the segmentation performance
by improving reconstruction process. This provides a new optimization approach
for unsupervised segmentation domain adaptation.

The optimization of WSR is based on mean absolute error (MAE):

argmin
w,b

LWSR = argmin
w,b

|xs − rs| = argmin
w,b

|xs −
112∑
i=0

(piwi + bi)|, (2)

where rs represents the reconstructed image of source domain input xs. pi rep-
resents the prediction map of the ith tissue, and wi, bi are linear parameters
for pi. We adopt MAE rather than mean squared error (MSE) because MAE
is robust to outliers. Using MAE, WSR could tolerate minor density variations
within ROIs without severely penalizing the reconstruction.

3.3 Fourier-based Domain Adaptation

Current research indicates that frequency-based domain adaptation is more ef-
fective for CT imaging [19, 21, 22]. For a target image xt, its discrete Fourier
transform is defined as :

F(xt)(u, q, p) =
H−1∑
h=0

W−1∑
w=0

Z−1∑
z=0

xt(h,w, z)e
−(j 2πuh

H +j 2πqw
W +j 2πpz

Z ) (3)

Its amplitude and phase components are FA(xt) and FP (xt), respectively.
The inverse Fourier transform is denoted as F−1. The Fourier transformation
and inverse can be calculated via the Fast Fourier Transform (FFT). We denote
a Residual U-Net as U , whose purpose is to process the amplitude and phase
components of a target image to match the pattern of the source domain. The
process can be defined as :

F∗
A(xt),F∗

P (xt) = U(FA(xt),FP (xt)), (4)

where F∗
A(xt) and F∗

P (xt) are processed amplitude and phase components. There-
fore, the processed image can be defined as x∗

t = F−1(F∗
A(xt),F∗

P (xt)). The pa-
rameters of U are denoted as θ, so we could rewrite the above process, x∗

t =
U(xt|θ).

Due to the domain shift between the target image xt and the source domain,
performance degradation occurs when the source model is applied to the target
domain. This impairment is reflected in the accuracy of the prediction map,
which in turn directly impacts the quality of the target reconstructed image rt.
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By enhancing the quality of the reconstructed image, we can mitigate the impact
of domain shift on the prediction map, thereby facilitating domain adaptation.
We could use the following function to optimize U :

argmin
θ

|xt − rt| = argmin
θ

|xt − WSR(Ss(U(xt|θ)))| (5)

4 Experiments And Results

NDCT source Dataset. The TotalSeg dataset [20] comprises full-dose CT
images meticulously chosen from multiple clinical routines, covering 104 distinct
anatomical structures. In line with protocols [12,20], the dataset is divided into
1081 training cases, 57 validation cases, and 65 cases for final testing. In this
study, we performed dense label annotation on 1081 training cases, adding seven
additional labels: subcutaneous fat, visceral fat, skull, filler, radius, sternum, and
other muscles.
LDCT target Dataset. The AutoPET dataset [7], comprising PET/CT data
with the CT component being low-dose CT scans. Diagnostic CT scans of
the neck, thorax, abdomen, and pelvis were acquired with 90 seconds post-
intravenous contrast agent injection. The dataset includes 1,014 training studies
from 900 patients and 200 test studies, with PET/CT scans from Siemens Bio-
graph and GE Discovery 690 scanners.
Evaluation Protocol. The LDCT dataset comprises over 1000 low-dose CT
images from PET/CT scans. Annotating these images represents a significant
manual cost. In the context of the large-scale dataset, we employ a characteristic
of UDA to assess the performance of various approaches: the upper limit of UDA
performance is supervised learning [2,25]. The MOOSE (Multi-Organ Objective
Segmentation) model [17] was trained on 50 LDCT images from PET/CT images
to segment 40 non-cerebral structures, with expert manual segmentation. We
evaluate UDA methods using the Dice Similarity Coefficient (DSC), comparing
them to the MOOSE model, which segments fewer tissues (40 vs. 112 types). In
comparisons, we merge related tissues (e.g., left and right kidneys into ’kidneys’)
to match the segmented categories.

Implements. We utilized a uniform preprocessing pipeline for source model
training and domain adaptation. CT images were resampled to a spacing of
1.5x1.5x1.5 mm3 and then randomly cropped into patches of size 192x192x192.
The Hounsfield units (HU) of the CT images were truncated for values less than -
1000 and more excellent than 1000. This was followed by normalization to a range
of 0 to 1 for input into the LUCIDA framework. The Adam optimizer was used
for optimization, with a learning rate of 3e-5 and parameter L2 regularization
set at 3e-5. The batch size was set to 4, and the training was conducted on
four 80G-cached A800 GPUs. During the inference phase, the CT images were
subjected to the same resampling process and segmented using a sliding window
approach with a 0.5 overlap.
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4.1 Results

Table 1 presents a comprehensive evaluation of various UDA methods applied
to the target domain of LDCT datasets, focusing on segmentation performance
as measured by the DSC. The UNet architecture, when unadapted, achieved
a mean DSC of 90.8% across all categories, serving as a baseline for compari-
son. The introduction of UDA methods generally improved performance across
all categories. Notably, the application of CycleGAN, AIGAN, and SIFA in-
creased the mean DSC to 91.5%, 91.6%, and 91.6%, respectively. The novel
method LUCIDA, without GAN-based adaptation, significantly outperformed
other methods, achieving a mean DSC of 93.5%, indicating its effectiveness in
domain adaptation. STUNet showed a remarkable baseline performance with a
mean DSC of 93.3%. The introduction of UDA methods varied in effectiveness,
with SIFA and FVP slightly improving the performance to 93.4% and 93.5%, re-
spectively. LUCIDA continued to exhibit the highest performance enhancement,
achieving a mean DSC of 94.6%.

Table 1. Performance comparison between UDA methods on target domain LDCT
dataset. Mean DSC is evaluated. Abd. represents ‘abdomen’

Method Adaptation GAN Param.
(M)

Abd.
Organs Muscles Fat Skeleton Vessels Heart Lungs All

UNet

- - 78.5 89.6 93.7 94.3 90.8 79.5 93.3 94.5 90.8
CycleGAN ✓ 108.7 90.2 94.1 94.6 91.3 80.4 94.7 95.3 91.5
AIGAN ✓ 164.8 90.4 94.2 95.1 91.5 80.0 94.3 95.6 91.6
SIFA ✓ 146.7 90.3 94.3 94.9 91.2 80.4 94.4 95.7 91.6

Dn-Dp - 1,476.0 90.1 93.9 94.9 91.1 81.4 94.8 95.8 91.7
FVP - 108.7 89.8 93.9 94.4 90.7 79.7 93.4 94.6 90.9

LUCIDA - 109.5 92.9 96.8 95.9 91.2 83.6 96.3 97.6 93.5

Swin-
UNETR

- - 248.1 90.5 94.5 94.7 91.1 80.1 94.1 95.1 91.4
CycleGAN ✓ 278.3 90.2 94.2 94.4 90.9 79.8 93.6 94.9 91.1
AIGAN ✓ 334.4 90.7 94.8 94.9 91.5 80.3 94.3 95.1 91.7
SIFA ✓ 316.3 90.6 94.6 94.8 91.2 80.1 94.2 95.0 91.5

Dn-Dp - 1,476.0 90.7 94.6 94.7 91.4 80.1 94.3 95.4 91.6
FVP - 248.1 90.4 94.4 94.6 91.2 79.9 94.3 95.5 91.5

LUCIDA - 279.1 92.4 96.2 95.6 90.9 83.2 94.8 95.9 92.7

STUNet

- - 440.5 91.7 97.7 95.7 91.0 84.0 95.6 97.4 93.3
CycleGAN ✓ 470.7 90.3 96.8 94.1 89.2 83.5 94.0 96.4 92.0
AIGAN ✓ 526.8 92.3 97.1 94.5 90.8 83.4 95.3 97.7 93.0
SIFA ✓ 508.7 92.5 97.6 95.5 91.0 84.3 95.7 97.5 93.4

Dn-Dp - 1,476.0 91.9 96.7 95.2 90.5 84.8 95.1 96.9 93.0
FVP - 440.5 92.4 97.4 95.9 90.8 85.2 95.7 97.3 93.5

LUCIDA - 471.5 93.8 97.3 97.0 92.9 87.7 96.0 97.6 94.6

These results underscore the effectiveness of LUCIDA in enhancing segmen-
tation performance across anatomical structures in LDCT images without the
need for GAN-based adaptation. The consistent improvement across different
architectures and categories suggests the potential of LUCIDA as a versatile
and robust approach for domain adaptation in medical image analysis.
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The results show limitations of GAN-based UDA methods, especially when
the original model performs well on the target domain. For the UNet model,
GAN-based improvements were minor (CycleGAN to 91.5%, AIGAN and SIFA
to 91.6%). For STUNet, GAN methods decreased performance (to 92.0%, 93.0%,
and 93.4%). This suggests GAN training’s instability might affect precision. Con-
versely, non-GAN models like FVP and LUCIDA consistently enhanced perfor-
mance across architectures.

4.2 Tissue Analysis

Figure 2 illustrates our comparative study of 21 distinct organ tissues using
five different models, including two baseline models and three variations of the
LUCIDA model. This comprehensive analysis offers insights into the models’ per-
formance across various organ tissues, ranging from the most easily recognizable
to those notoriously challenging to identify.

Fig. 2. DSC performance comparison across 21 representative tissue types.
LUCIDA-E represents the average ensemble results from predictions made by LUCIDA-
UNet and LUCIDA-STUNet.

The results find that organs such as the spleen, kidneys, liver, muscles, and
fat are the easiest to recognize. The source models without adaptation exhibit
outstanding performance on these organs. A notable domain gap effect was ob-
served in the segmentation of the stomach, pancreas, lungs, esophagus, trachea,
small bowel, duodenum, and colon. However, the application of LUCIDA, par-
ticularly LUCIDA-E, remarkably bridged this gap. LUCIDA-E achieved an im-
pressive average Dice Similarity Coefficient (DSC) of over 94% for these organs.
The gallbladder, adrenal glands, vessels, duodenum, and bladder represent some
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of the most challenging tissues for segmentation due to their smaller size and
complex structural composition. LUCIDA-E facilitated an average performance
exceeding 90% DSC in low-dose CT scans.

5 Conclusion

In this study, we introduced LUCIDA, a novel approach in the UDA realm
for segmenting low-dose CT images without the need for LDCT annotations.
Our comprehensive evaluation shows that LUCIDA significantly outperforms
traditional UDA methods, marking a major advancement in medical imaging
and offering an effective tool for clinicians and radiologists.
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