
Parameter Efficient Fine Tuning for
Multi-scanner PET to PET Reconstruction

Yumin Kim∗ Gayoon Choi∗ Seong Jae Hwang†

Department of Artificial Intelligence, Yonsei University, Seoul, Republic of Korea
{yumin, gynchoi17, seongjae}@yonsei.ac.kr

Abstract. Reducing scan time in Positron Emission Tomography (PET)
imaging while maintaining high-quality images is crucial for minimizing
patient discomfort and radiation exposure. Due to the limited size of
datasets and distribution discrepancy across scanners in medical imaging,
fine-tuning in a parameter-efficient and effective manner is on the rise.
Motivated by the potential of Parameter Efficient Fine-Tuning (PEFT),
we aim to address these issues by effectively leveraging PEFT to im-
prove limited data and GPU resource issues in multi-scanner setups. In
this paper, we introduce PETITE, Parameter Efficient Fine-Tuning for
MultI-scanner PET to PET REconstruction, which represents the opti-
mal PEFT combination when independently applying encoder-decoder
components to each model architecture. To the best of our knowledge,
this study is the first to systematically explore the efficacy of diverse
PEFT techniques in medical imaging reconstruction tasks via prevalent
encoder-decoder models. This investigation, in particular, brings intrigu-
ing insights into PETITE as we show further improvements by treating
the encoder and decoder separately and mixing different PEFT meth-
ods, namely, Mix-PEFT. Using multi-scanner PET datasets comprised
of five different scanners, we extensively test the cross-scanner PET scan
time reduction performances (i.e., a model pre-trained on one scanner
is fine-tuned on a different scanner) of 21 feasible Mix-PEFT combi-
nations to derive optimal PETITE. We show that training with less
than 1% parameters using PETITE performs on par with full fine-tuning
(i.e., 100% parameter). Code is available at: https://github.com/MICV-
yonsei/PETITE

Keywords: Parameter Efficient Fine-Tuning · Vision Transformer · Positron
Emission Tomography (PET) · PET reconstruction

1 Introduction

Positron Emission Tomography (PET) is an in vivo nuclear medicine technique
using radiotracers for early diagnosis of Alzheimer’s and Parkinson’s diseases
[2,4]. Despite their clinical value, long-time scans can cause motion artifacts that
lead to discomfort for the patients [11]. To address this issue, PET reconstruction
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Fig. 1. The overview of PETITE : Scheme for single source-target settings in PET
scan time reduction with PEFT.

emerges as a remarkable technique, enhancing image quality significantly without
extending scanning time [3, 20, 26]. It has continuously evolved through various
deep learning methods, enabling the reconstruction of high-quality scans from
short scans that closely match those acquired from longer scans.

An array of generative models to achieve PET reconstruction have been de-
veloped. For instance, Wang et al. [23] leveraged a Generative Adversarial Net-
works (GAN) [8] to synthesize images that are hard to discriminate with high-
dose PET. Recently, the rise of Vision Transformer (ViT) [5] has also demon-
strated its potential for PET reconstruction. Expanding on this integration, Luo
et al. [20] inserts ViTs in CNN Encoder-Decoder to take advantage of both CNN
and Transformer and Zeng et al. [26] adopt convolution in the self-attention
mechanism to reduce semantic ambiguity. However, these models encounter effi-
ciency challenges due to the process known as full fine-tuning (Full-FT), which
involves updating all layers of a large model, resulting in increased training time
and higher GPU resource consumption.

In medical imaging, the diversity of equipment and protocols poses persistent
practical challenges, significantly impacting data generalization and model ap-
plication. This issue manifests similarly in the PET domain due to discrepancies
in scanner manufacturers, imaging facilities, or protocol types that complicate
application from hospital to hospital. Such variations limit the generalization
of models trained on a particular dataset to others, requiring fine-tuning in
hospitals with limited datasets. Specifically, among fine-tuning methods, gener-
alization in multi-scanner is also an important issue.

Consequently, due to the scarcity of datasets and inefficient large-scale mod-
els, some works progressively adopted Parameter-Efficient Fine-Tuning (PEFT).
PEFT approaches significantly decrease storage requirements and computational
costs by freezing most parameters of a pre-trained model and selectively fine-
tuning a limited set of parameters. Despite considerable research on PEFT [7,
16, 19], there are few attempts at medical imaging, with prior studies primarily
focusing on classification tasks [6, 10].

Recognizing the gaps in applying PEFT within medical imaging, particu-
larly in reconstruction tasks, we pioneer the use of the PEFT methodology
for PET reconstruction from short-time scans, aiming to reduce scan duration
and enhance reconstruction quality [1, 15]. Specifically in scenarios with rela-
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Fig. 2. The pipeline of the encoder-decoder structure of each ViT-based
model. (a) 3D CVT-GAN [26] consists of a generator with a ViT-based encoder and
decoder. Only the first three layers of the encoder and the first two layers of the decoder
are trained. (b) UNETR [9] consists of a ViT-based encoder and a CNN-based decoder.

tively limited data availability, we aim to enhance reconstruction performance
across diverse scanners using various PEFT methods. Consequently, we intro-
duce PETITE, Parameter-Efficient Fine-Tuning for MultI-scanner PET to
PET REconstruction, which represents the optimal PEFT combination when
applying the encoder-decoder approach to each model architecture. PETITE
uses fewer than 1% of the parameters for PET reconstruction using short-time
scans aimed at reducing scan time, as detailed in Fig. 1, which describes its
scheme for single source-target settings. Furthermore, we investigate the op-
timal experimental settings for reconstruction models through various PEFT
approaches. Specifically, we explore the synergistic effects of applying diverse
PEFT methods independently to the distinct encoder and decoder components,
the process which is defined as Mix-PEFT.
Contributions. Our main contributions are as follows: (1) We leverage the
PEFT methodology in a medical reconstruction task to reduce the scan time
of PET images on scanners with different dimensions, voxel spacing, and insti-
tutions. To the best of our knowledge, this extensive study represents the first
application of the PEFT methodology within the field of medical imaging. (2)
Upon experimenting with possible Mix-PEFT, we found that using less than 1%
of parameters can achieve performance comparable to Full-FT, carefully consid-
ering encoder and decoder architecture. (3) We provide novel insights into the
optimal PEFT settings tailored for the reconstruction model.

2 Methodology

We briefly describe relevant PET reconstruction models and outline parameter
efficient fine-tuning (PEFT) approaches (Sec. 2.1). Then, we detail Mix-PEFT
to consider encoder and decoder separately (Sec. 2.2).

Scan-time Reduction Model. (a) 3D CVT-GAN [26] aims to effectively in-
tegrate CNN and ViT technologies for high-quality PET reconstruction. This
architecture replaces projection in multi-head attention from the linear to the
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Fig. 3. Illustrations of the modified structures of PEFT methods.

convolutional [24], building encoder-decoder structure and combining the con-
ditional GAN [21]. The architecture includes an encoder block for feature ex-
traction and decoder blocks for restoring high-quality PET scans, capturing both
local spatial features and global contexts from various network layers. During the
pre-training step, the discriminator is also trained, but it is frozen in the PEFT
step. (b) UNETR [9] comprises a ViT-based encoder for extracting representa-
tions that are merged with the CNN-based decoder through skip connections at
multiple resolutions to predict outputs. For detailed structures into the positions
and structures of the encoder and decoder in the model used, see Fig. 2.

2.1 PEFT for PET Scan-time Reduction

We describe the PEFT concept and describe the model-specific adjustments and
their rationale. We have divided the PEFT category into two variants: Selective
and Additive methods. The optimal hyperparameter values for PEFT are given
in the supplementary.

Selective methods. This method includes (I) LayerNorm tuning, and (II)
BitFit, and leverages the model’s pre-training procedure without making ma-
jor changes. This approach precisely fine-tunes specific layers or a segment of
the original pre-trained model, without adding new modules, optimizing perfor-
mance efficiently.

(I)LayerNorm tuning tunes parameters θ′ ∈ θ in the normalization layer
for adapting intermediate statistics to align with target distributions.

(II)BitFit proposes only updates bias-term of the network. Based on our
experimental results, BitFit tuning has been identified as one of the competitive
baselines for PEFT. Building on this discovery, we found that combining Bit-
Fit tuning with all PEFT methodologies yields better performance than using
original PEFT alone. Specifically, integrating BitFit with particularly effective
techniques in our study, such as LoRA, SSF, and VPT described below, led
to notable performance enhancements, as shown in Table 2(a). These findings
indicate that BitFit and PEFT methods are effectively complementary.
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Additive methods. The additive method can be categorized into four types [17]:
(I) LoRA, (II) Adapters, (III) SSF, and (IV) VPT. This approach involves aug-
menting the pre-trained model with additional trainable layers, where only the
parameters of these new layers are subject to training.

(I)LoRA injects learnable rank decomposition matrices into pre-trained
weight matrices, under the hypothesis that, during adaptation, weight updates
have a low intrinsic rank [13]. The low-rank decomposition matrix is scaled with
a factor α that is constant to a row-rank r, and the number of trainable param-
eters depends on r. As shown in Fig. 3(a), we apply LoRA to the query and
key matrices, since tuning only these matrices yields better results and a param-
eter reduction of 0.22% for the 3D CVT-GAN model and 0.03% for UNETR,
resulting in better performance, with more simplicity than adjusting the query,
key, and value matrices together. In UNETR, tuning with a learning rate higher
than 1e-2 leads to a fall in local optima and hinders training. Analysis of rank
revealed that r = 1, 4, 8 are stable in performance, whereas r = 16 resulted in
decreased performance.

(II)Adapters introduces lightweight modules, adding fully connected net-
works after attention, and feed-forward layers in Transformer [12]. An adapter
module typically comprises a linear down-projection, succeeded by a nonlinear
activation function, and concluded with a linear up-projection, all integrated
with a residual connection. The bottleneck architecture enables parameter re-
duction through a reduction factor (rf). As shown in Fig. 3(b), we add the
Adapters only after the feed-forward layer to further reduce the computational
cost according to Pfieffer [22]. We test adapters sizes in {1,4,8,16,32}. Analysis
of rank revealed that r = 4,8 are stable in performance.

(III)Scaling & Shifting Your Features (SSF) modulates deep features x
from the pre-trained model via linear transformations [18]. SSF module consists
of the scale factor γ, dot product with x, and the shift factor β, added to x.
It is injected after the multi-head attention layer, the feed-forward layer, and
the normalization layer of the Transformer. As shown in Fig. 3(c), it is injected
after every MLP, MHSA, and Layernorm module, scaling and shifting features
from them during training, and can be re-parameterized at inference since it is
a linear structure.

(IV)Visual-Prompt Tuning (VPT) introduces a small set of p contin-
uous vectors in the embedding space of every encoder, tailored to learn task-
specific information via attention. [14]. Since VPT-deep, which inserts prompt
tokens into every encoder layer, does not align well with reconstruction tasks,
our approach solely utilizes VPT-shallow. Additionally, we observed that in-
serting prompt tokens from the second encoder, bypassing the first, enhanced
performance as depicted in Fig. 3(d). Inserting prompt tokens into the first en-
coder layer can disrupt representation learning, as it may interfere with focusing
on blocks containing task-relevant information due to the variance in locations
across pre-trained ViT models [25]. In 3D CVT-GAN, we inserted 8 and 32 to-
kens into the encoder, while in UNETR, we added 50 tokens. The function of
VPT is as follows:
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maps comparing the reconstructed PET scans to the ground-truth (GT).

[Z2,E2] = L2([P,E1]), [Zi,Ei] = Li([Zi−1,Ei−1]), i = 3, 4, ..., N. (1)

2.2 PETITE: Optimal Effectiveness of Mix-PEFT

Mix-PEFT refers to the approach of applying various PEFT methods indepen-
dently to the encoder and decoder within each model, aiming to achieve and
analyze the ideal synergistic effect. This method particularly highlights PEFT
techniques that consistently provide positive impacts on both the encoder and
decoder in two ViT-based models, the 3D CVT-GAN and UNETR models.

(I) ViT-based encoder-decoder: The 3D CVT-GAN applies VPT [14] in
the encoder and LoRA [13] in the decoder, representing the optimal Mix-PEFT
combination. By applying task-specific prompt tokens to the encoder via VPT,
the 3D CVT-GAN is fine-tuned for specific tasks to improve feature extraction.
Using VPT and LoRA together creates a synergistic effect, as both operate
within the critical attention component of ViT. For parameter efficiency, the
decoder tunes only the query and key matrices in the attention layer to produce
high-quality PET scans.

(II) ViT-based encoder and a CNN-based decoder: The UNETR ap-
plies LoRA to the encoder and SSF [18] to the decoder, representing the optimal
Mix-PEFT combination. SSF is best for CNNs. Tuning SSF in ViT with other
PEFT methods results in a performance drop, as it hinders ViT’s complex at-
tention mechanism. While PEFT was originally designed for ViT layers, it has
been adapted to be compatible with CNN-based decoders in our work.

The representations extracted from the encoder are matched to the target
dataset’s distribution by applying SSF to the CNN-based decoder, utilizing the
features of the pre-trained model.

3 Experiments and Results

Datasets and Image Preprocessing. In our study, we used the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) public dataset for PET imaging across
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Table 1. Quantitative comparison of PSNR, SSIM, and NRMSE between
PETITE (Ours) and other PEFT methods. Best : Bold; Second best : Underline

(a) 3D CVT-GAN [26] (b) UNETR [9]
Method % Param PSNR(↑) SSIM(↑) NRMSE(↓) Method % Param PSNR(↑) SSIM(↑) NRMSE(↓)
No-FT - 30.329 0.905 0.0327 No-FT - 30.034 0.787 0.0388
Full-FT 100% 31.410 0.908 0.0292 Full-FT 100% 31.746 0.884 0.0285
LayerNorm 0.041% 31.304 0.914 0.0292 LayerNorm 0.037% 30.753 0.811 0.0308
BitFit 0.12% 31.291 0.910 0.0294 BitFit 0.07% 30.969 0.810 0.0299
LoRA 0.45% 30.982 0.909 0.0308 LoRA 0.46% 31.010 0.825 0.0299
Adapters 0.71% 31.108 0.913 0.0304 Adapters 0.44% 30.657 0.798 0.0311
SSF 0.16% 31.018 0.809 0.0298 SSF 0.11% 30.989 0.809 0.0298
VPT 0.02% 30.398 0.892 0.0331 VPT 0.038% 30.494 0.796 0.0318
PETITE (Ours) 0.32% 31.373 0.912 0.0298 PETITE (Ours) 0.51% 31.696 0.865 0.0292

five different scanners and institutions with details on multi-scanner information
in Supplementary. 18F-Fluorodeoxyglucose (18F-FDG) was injected at a dose
of 185 MBq (5 mCi) for the scans, with each ADNI PET scan consisting of a
sequence of six 5-minute frame scans (i.e., 0-5, ..., 25-30 minutes). The short-
time scans PET is the first 5-minute scan (0-5) only. The long-time scans PET
(GT) is generated by simply averaging these six five-minute frames. Our dataset
was split into 30 training and 15 validation samples for pre-training, and 10
training and 15 validation samples for parameter efficient fine-tuning (PEFT).
We processed the images using the MONAI Library, applying a random size crop
to 64× 64× 64 and normalizing the intensities of all reconstructed PET images
to a 0-1 range.
Performance Assesment. If scanner 1 is used as the source, pre-training is
performed on scanner 1, and PEFT on the other four scanners. This process is
repeated for each scanner as the source, PEFT the others. Each source scanner
is thus fine-tuned four times, resulting in 20 possible PEFT results across five
scanners. After averaging the results for the source-target pairs, excluding the
same scanner as the source, we averaged the five resulting values again. Ad-
ditionally, we performed a 3-fold cross-validation, leading to further averaging
across three iterations for robust results.
Evaluation Metrics. The peak signal-to-noise ratio (PSNR), structural simi-
larity index measure (SSIM), and normalized root mean squared error (NRMSE)
are used as quantitative evaluation metrics. Among them, PSNR indicates es-
timation accuracy in terms of the logarithmic decibel scale, while SSIM and
NRMSE represent the structural similarity and voxel-wise intensity differences
between the ground-truth and predicted images, respectively.
Implementation Details. The hyperparameters we tuned include the number
of epochs, batch size, learning rate, learning rate decay, learning rate scheduler,
the rank value of LoRA [13], the reduction factor of Adapters, and the number
of VPT prompt tokens [14]. All models were trained with a batch size of 6,
using PyTorch and MONAI for implementation. Both models performed pre-
training for 1000 epochs. The PEFT involved training the 3D CVT-GAN for 150
epochs and the UNETR for 200 epochs. The final performance was determined
based on the epoch with the highest PSNR value. See supplementary for detailed
hyperparameters for PEFT.
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Table 2. Optimal Mix-PEFT (Ours) outperforms each PEFT method with
or without BitFit. Best : Bold; Second best : Underline

(a) 3D CVT-GAN [26] (b) UNETR [9]
Method BitFit % Param PSNR(↑) SSIM(↑) NRMSE(↓) Method BitFit % Param PSNR(↑) SSIM(↑) NRMSE(↓)
No-FT - - 30.329 0.905 0.0327 No-FT - - 30.034 0.787 0.0338
Full-FT - 100% 31.410 0.908 0.0292 Full-FT - 100% 31.746 0.884 0.0282
BitFit ✗ 0.12% 31.291 0.910 0.0294 BitFit ✗ 0.07% 30.969 0.810 0.0299
VPT ✗ 0.02% 30.398 0.892 0.0331 LoRA (r=4) ✗ 0.44% 31.010 0.825 0.0299
LoRA (r=8) ✗ 0.72% 31.050 0.900 0.0300 SSF ✗ 0.2% 30.897 0.808 0.0303
VPT ✓ 0.14% 31.302 0.909 0.0300 LoRA (r=4) ✓ 0.51% 31.010 0.825 0.0299
LoRA (r=8) ✓ 0.61% 31.073 0.910 0.0307 SSF ✓ 0.2% 30.897 0.808 0.0303
PETITE (Ours) ✗ 0.20% 31.305 0.910 0.0307 PETITE (Ours) ✗ 0.44% 31.193 0.819 0.0310
PETITE (Ours) ✓ 0.32% 31.373 0.912 0.0298 PETITE (Ours) ✓ 0.51% 31.696 0.865 0.0292

3.1 Evaluation Results

Quantitative Experiments. We evaluated our proposed method on two ViT-
based models: 3D CVT-GAN [26] and UNETR [9], employing various PEFT
methods such as (1) LayerNorm tuning, (2) BitFit, (3) LoRA, (4) Adapters,
(5) SSF, (6) VPT, and (7) PETITE (Ours). Specifically, when compared to
one of the competitive baselines, Adapters, in the 3D CVT-GAN (as shown in
Table 1(a)), our proposed PETITE approach achieved improvements of 0.263 in
PSNR and 0.0006 in NRMSE, while utilizing 0.4% fewer parameters. Similarly,
in the UNETR (as shown in Table 1(b)), PETITE demonstrated its efficacy
as a parameter-efficient approach by improving the metrics PSNR, SSIM, and
NRMSE by 1.039, 0.067, and 0.0019, respectively, while maintaining a parameter
size comparable to that of Adapters.

Qualitative Experiments. In Fig. 4 the lighter color of the error map indicates
a smaller error. As observed, the quantitative experiments of the 3D CVT-GAN
model show that only the PSNR is comparable to the performance of Full-FT,
Fig. 4, the error is smaller and closer to the long-time scans PET (GT) compared
to Full-FT.

Ablation Study. To assess the impact of key components in our proposed
PETITE, we carry out ablation studies on two models by considering the fol-
lowing configurations: (1) Baseline, (2) PEFT, (3) PEFT + BitFit, and (4)
PETITE (Ours). Commonly, the (1) Baseline encompasses No-FT and Full-FT,
while (2) original PEFT method is tuned on all layers, and the combination
with (3) BitFit is explored to demonstrate the efficacy of tuning the original
PEFT alongside BitFit. Although various combinations were possible, (4) Ours
represents the best-performing combination identified through ablation studies
for each model. As shown in Table 2, combining the PEFT method tailored for
the encoder-decoder structure with BitFit tuning across all layers yields superior
performance. Notably, within the UNETR model in Table 2(b), our approach,
despite using 81.9% fewer parameters than the ViT-based encoder, demonstrates
higher performance in terms of PSNR and SSIM by 0.169 and 0.07, respectively,
thereby validating the effectiveness of the PETITE methodology.
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4 Conclusions

Our comprehensive experiments on multi-scanner PET datasets have affirmed
the effectiveness of PETITE, demonstrating that the synergetic effects of Mix-
PEFT enable achieving results akin to full fine-tuning with less than 1% of pa-
rameters. This efficient approach not only mitigates issues arising from limited
datasets and discrepancies in scanner distributions but also addresses the critical
need to reduce PET scan times while maintaining image quality. The insights
gained from separately addressing encoder and decoder components and inte-
grating various PEFT methods highlight the potential of PETITE to innovate
medical imaging reconstruction tasks. This study lays the groundwork for future
research in parameter-efficient methodologies, foreseeing extensive exploration
of parameter-efficient fine-tuning methods in the medical imaging field.

Acknowledgments. This work was supported in part by the IITP 2020-0-01361 (AI
Graduate School Program at Yonsei University), NRF RS-2023-00262002, and NRF
RS-2023-00219019 funded by Korean Government (MSIT).

Disclosure of Interests. The authors have no competing interests.

References

1. Anwar, S.M., Majid, M., Qayyum, A., Awais, M., Alnowami, M., Khan, M.K.:
Medical image analysis using convolutional neural networks: a review. Journal of
medical systems 42, 1–13 (2018)

2. Becker, G., Müller, A., Braune, S., Büttner, T., Benecke, R., Greulich, W., Klein,
W., Mark, G., Rieke, J., Thümler, R.: Early diagnosis of parkinson’s disease. Jour-
nal of neurology 249(Suppl 3), iii40–iii48 (2002)

3. Conti, M.: Focus on time-of-flight pet: the benefits of improved time resolution.
European journal of nuclear medicine and molecular imaging 38(6), 1147–1157
(2011)

4. Cummings, J.: The national institute on aging—alzheimer’s association framework
on alzheimer’s disease: application to clinical trials. Alzheimer’s & Dementia 15(1),
172–178 (2019)

5. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner,
T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., et al.: An image is worth
16x16 words: Transformers for image recognition at scale (2020)

6. Dutt, R., Ericsson, L., Sanchez, P., Tsaftaris, S.A., Hospedales, T.M.: Parameter-
efficient fine-tuning for medical image analysis: The missed opportunity. CoRR
abs/2305.08252 (2023), https://doi.org/10.48550/arXiv.2305.08252

7. Edalati, A., Tahaei, M.S., Kobyzev, I., Nia, V.P., Clark, J.J., Rezagholizadeh, M.:
Krona: Parameter efficient tuning with kronecker adapter. CoRR abs/2212.10650
(2022), https://doi.org/10.48550/arXiv.2212.10650

8. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural infor-
mation processing systems 27 (2014)

9. Hatamizadeh, A., Tang, Y., Nath, V., Yang, D., Myronenko, A., Landman, B.,
Roth, H.R., Xu, D.: Unetr: Transformers for 3d medical image segmentation. In:
Proceedings of the IEEE/CVF winter conference on applications of computer vi-
sion. pp. 574–584 (2022)



10 Y. Kim et al.

10. He, J., Zhou, C., Ma, X., Berg-Kirkpatrick, T., Neubig, G.: Towards a uni-
fied view of parameter-efficient transfer learning. CoRR abs/2110.04366 (2021),
https://arxiv.org/abs/2110.04366

11. Herzog, H., Tellmann, L., Fulton, R., Stangier, I., Kops, E.R., Bente, K., Boy, C.,
Hurlemann, R., Pietrzyk, U.: Motion artifact reduction on parametric pet images
of neuroreceptor binding. Journal of Nuclear Medicine 46(6), 1059–1065 (2005)

12. Houlsby, N., Giurgiu, A., Jastrzebski, S., Morrone, B., De Laroussilhe, Q., Ges-
mundo, A., Attariyan, M., Gelly, S.: Parameter-efficient transfer learning for nlp.
In: International Conference on Machine Learning. pp. 2790–2799. PMLR (2019)

13. Hu, E.J., yelong shen, Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S.,
Wang, L., Chen, W.: LoRA: Low-rank adaptation of large language
models. In: International Conference on Learning Representations (2022),
https://openreview.net/forum?id=nZeVKeeFYf9

14. Jia, M., Tang, L., Chen, B.C., Cardie, C., Belongie, S., Hariharan, B., Lim, S.N.:
Visual prompt tuning. In: European Conference on Computer Vision. pp. 709–727.
Springer (2022)

15. Li, X., Zhang, L., Wu, Z., Liu, Z., Zhao, L., Yuan, Y., Liu, J., Li, G., Zhu, D.,
Yan, P., et al.: Artificial general intelligence for medical imaging. arXiv preprint
arXiv:2306.05480 (2023)

16. Li, X.L., Liang, P.: Prefix-tuning: Optimizing continuous prompts for generation
pp. 4582–4597 (2021)

17. Lialin, V., Deshpande, V., Rumshisky, A.: Scaling down to scale up:
A guide to parameter-efficient fine-tuning. CoRR abs/2303.15647 (2023),
https://doi.org/10.48550/arXiv.2303.15647

18. Lian, D., Zhou, D., Feng, J., Wang, X.: Scaling & shifting your features: A new
baseline for efficient model tuning. Advances in Neural Information Processing
Systems 35, 109–123 (2022)

19. Liu, X., Ji, K., Fu, Y., Du, Z., Yang, Z., Tang, J.: P-tuning v2: Prompt tun-
ing can be comparable to fine-tuning universally across scales and tasks. CoRR
abs/2110.07602 (2021), https://arxiv.org/abs/2110.07602

20. Luo, Y., Wang, Y., Zu, C., Zhan, B., Wu, X., Zhou, J., Shen, D., Zhou, L.: 3d
transformer-gan for high-quality pet reconstruction. In: Medical Image Comput-
ing and Computer Assisted Intervention–MICCAI 2021: 24th International Con-
ference, Strasbourg, France, September 27–October 1, 2021, Proceedings, Part VI
24. pp. 276–285. Springer (2021)

21. Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv preprint
arXiv:1411.1784 (2014)

22. Pfeiffer, J., Kamath, A., Rücklé, A., Cho, K., Gurevych, I.: Adapterfusion: Non-
destructive task composition for transfer learning. CoRR abs/2005.00247 (2020),
https://arxiv.org/abs/2005.00247

23. Wang, Y., Yu, B., Wang, L., Zu, C., Lalush, D.S., Lin, W., Wu, X., Zhou, J., Shen,
D., Zhou, L.: 3d conditional generative adversarial networks for high-quality pet
image estimation at low dose. Neuroimage 174, 550–562 (2018)

24. Wu, H., Xiao, B., Codella, N., Liu, M., Dai, X., Yuan, L., Zhang, L.: Cvt: In-
troducing convolutions to vision transformers. In: Proceedings of the IEEE/CVF
international conference on computer vision. pp. 22–31 (2021)

25. Yoo, S., Kim, E., Jung, D., Lee, J., Yoon, S.: Improving visual prompt tuning
for self-supervised vision transformers. In: International Conference on Machine
Learning. pp. 40075–40092. PMLR (2023)



PEFT for Multi-scanner PET to PET Reconstruction 11

26. Zeng, P., Zhou, L., Zu, C., Zeng, X., Jiao, Z., Wu, X., Zhou, J., Shen, D., Wang,
Y.: 3d cvt-gan: A 3d convolutional vision transformer-gan for pet reconstruction.
In: International Conference on Medical Image Computing and Computer-Assisted
Intervention. pp. 516–526. Springer (2022)


