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Abstract. Segmentation of infected areas in chest X-rays is pivotal for
facilitating the accurate delineation of pulmonary structures and patho-
logical anomalies. Recently, multi-modal language-guided image segmen-
tation methods have emerged as a promising solution for chest X-rays
where the clinical text reports, depicting the assessment of the images,
are used as guidance. Nevertheless, existing language-guided methods
require clinical reports alongside the images, and hence, they are not
applicable for use in image segmentation in a decision support context,
but rather limited to retrospective image analysis after clinical reporting
has been completed. In this study, we propose a self-guided segmenta-
tion framework (SGSeg) 3 that leverages language guidance for train-
ing (multi-modal) while enabling text-free inference (uni-modal), which
is the first that enables text-free inference in language-guided segmen-
tation. We exploit the critical location information of both pulmonary
and pathological structures depicted in the text reports and introduce
a novel localization-enhanced report generation (LERG) module to gen-
erate clinical reports for self-guidance. Our LERG integrates an object
detector and a location-based attention aggregator, weakly-supervised
by a location-aware pseudo-label extraction module. Extensive experi-
ments on a well-benchmarked QaTa-COV19 dataset demonstrate that
our SGSeg achieved superior performance than existing uni-modal seg-
mentation methods and closely matched the state-of-the-art performance
of multi-modal language-guided segmentation methods.
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1 Introduction

Chest X-rays play an essential role in the diagnosis of some pulmonary infec-
tious diseases. In the analysis of chest X-rays, segmentation of the infected areas
is essential for improving diagnostic accuracy, optimizing treatment plans, and
3 the code repository can be accessed at https://github.com/ShuchangYe-bib/SGSeg
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enabling disease progression monitoring [1]. However, manual segmentation con-
ducted by radiologists is labor-intensive and prone to inconsistencies, posing
challenges to its scalability and uniformity in clinical applications [2]. This in-
spires the integration of deep learning into the segmentation of chest X-rays,
offering a pathway to automate the delineation process and enhance the effi-
ciency and reliability of pulmonary diagnosis [3, 4]. The development of medical
segmentation has been significantly advanced since the invention of U-Net [5, 6].
With the progression of neural network architectures, U-Net has been extended
as many variants (e.g., U-Net++ [7], Attention U-Net [8], Trans U-Net [9], and
Swin U-Net [10]) and obtained improved performance. Nevertheless, a persis-
tent challenge within the medical domain remains: the inherent complexity of
medical images poses difficulties for models to interpret underlying pathologies
and identify disease locations, resulting in suboptimal segmentation accuracy for
pulmonary lesions.

Recently, multi-modal learning has provided evidence that integrating visual
and textual data exhibits superior performance over their uni-modal counter-
parts [11]. Visual Language Pre-training (VLP) [12] has significantly advanced
across various computer vision tasks by effectively bridging image and text fea-
tures. For instance, CLIP [13] adopted contrastive learning techniques to align
the representations of image and text in latent space, fostering robust cross-
modal similarities. Existing VLP primarily trained encoders, yet for tasks requir-
ing both an encoder and a decoder, such as segmentation, a more comprehensive
training approach to simultaneously optimize both components is essential. In
medical image segmentation, LViT [14] demonstrated that the models guided by
additional textual information can achieve higher performance. Building upon
the LViT, Zhong et al. [15] advanced image-text fusion techniques by introduc-
ing a text-guided decoder in U-Net. These multi-modal language-guided meth-
ods outperformed existing uni-modal methods, achieving state-of-the-art per-
formance in chest X-ray segmentation. However, existing multi-modal methods
necessitate the input of textual reports alongside images during inference, diverg-
ing from the clinical protocol of analyzing images prior to generating reports and
thus reducing their clinical applications.

In this study, we explore leveraging linguistic context during training while
enabling text-free inference in language-guided segmentation of chest X-rays.
Our main contributions are summarized as follows:

– We propose a self-guided segmentation framework (SGSeg) where the encoder-
decoder process is self-guided by generated clinical reports during inference.

– Our SGSeg introduces a novel Localization-Enhanced Report Generation
(LERG) module that can accurately identify disease locations and generate
reports to provide guidance for segmentation by utilizing object predictions
from an object detector to assist the report generation process.

– To address the issue where most object predictions produced by object de-
coders are categorized as “no class," with only a minor portion accurately
indicating the locations of infected areas, we proposed a location-based atten-
tion aggregator to transform sparse object prediction into location features.
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– To provide weak supervision of LERG, a clustering-based location-aware
pseudo-label extractor is introduced to extract location information from
clinical reports.

Extensive experiments on the well-benchmarked QaTa-COV19 dataset demon-
strate that the proposed SGSeg outperforms existing uni-modal inference seg-
mentation methods and closely approximates the benchmarks set by the state-
of-the-art multi-modal inference segmentation methods.

2 Method

2.1 Self-guided segmentation framework (SGSeg)

The proposed Self-Guided Segmentation framework (SGSeg) comprises two main
components: a Language-guided U-Net and a novel weakly-supervised localization-
enhanced report generation (LERG) component (see Fig. 1). During the train-
ing phase, ground-truth reports served as inputs to the text encoder from which
labels were extracted to provide weak supervision for LERG. In the inference
phase, generated reports replaced the ground truth as inputs to the text encoder,
facilitating text-free inference.
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Fig. 1. The neural network architecture of the proposed SGSeg framework: The
blue segment represents the Language-guided U-Net, while the pink segment denotes
localization-enhanced report generation processes.

2.2 Language-guided U-Net

In the Language-guided U-Net, the image downsampling process utilized Con-
vNeXt-T [17], pre-trained on ImageNet-1K, to sequentially reduce the dimen-
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sionality from 224x224 to 7x7 by a factor of 4 at each step. For the image up-
sampling decoder, we adopted the GuidedDecoder structure from LanGuideMed-
Seg [15], utilizing a cross-modal attention module to fuse extracted position in-
formation with image features effectively. The text encoder was implemented
using BERT [19], which was pre-trained through masked language modeling [18]
and multimodal contrastive learning [13] on the MIMIC dataset.

2.3 Localization-enhanced Report Generation

Understanding Text’s Role in Language-guided Segmentation To delve
into the underlying principles of how text influences the segmentation results, we
examined the importance of each word within a given text through a cross-modal
attention module, as shown in Fig. 2. The importance of each word was estimated
based on the product of the query (q) and key (k) vectors for each word. The
heatmap revealed a pronounced emphasis on location-descriptive words (“up-
per", “middle", “lower", “left", and “right") within the cross-modal attention
framework. This phenomenon indicated the potential to refine segmentation ac-
curacy by localizing infected areas.

0.00 0.12 0.16 0.36 0.46 0.48 0.39 0.65 0.53 0.73 0.83 1.00 0.78 0.85 0.30 0.75 0.52 1.00 0.39 0.69

[CLS] bilateral pulmonary infection , five infected areas , upper middle lower left lung and middle lower right lung .

Fig. 2. Illustration of word importance, where we visualize the attention weight on
each token of a report.

Location-aware pseudo-Label Extraction To effectively use the additional
textual report during training, we first extract descriptions related to location
information, utilizing a BERT model trained on X-ray to encode disease location
into latent representation. Subsequently, we apply HDBSCAN [20] to group the
text embedding into meaningful clusters that reflect the spatial relationships
among reports.

Weakly-supervised Localization-enhanced Report Generation We pro-
pose automatically generating reports focusing on spatial positioning to guide
segmentation. Given the absence of ground truth labels for location prediction,
pseudo-labels were extracted from reports to weakly-supervise the localization
process. Our object detection network adhered to the RT-DETR [21] architec-
ture, where images were first compressed via a CNN architecture, followed by
intra-scale feature interaction through self-attention. Subsequently, features of
varying granularity interact via a Cross-Scale Feature-Fusion Module (CCFM),
with which object queries are decoded into object predictions via an object de-
coder, according to:
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Q = Deocde(CCFM(FCNN (I))) (1)
where P represents object prediction derived from the image I processed through
ResNet50 [22] backbone and the CCFM transformation. To refine the alignment
between the predicted vector, denoted as p, and the pseudo-labels, represented
by y, the Binary Cross-Entropy Loss was employed according to:

Loss = − 1

N

N∑
i=1

[yi · log(pi) + (1− yi) · log(1− pi)] (2)

where N signifies the number of labels, specifically six for this framework, align-
ing with the “upper", “middle", and “lower" regions across both lungs. Here, pi
and yi denote the predicted probability and the actual label for the i− th label,
respectively.

The final step involves decoding the labels into precise infected area locations,
enabling the inference of both the number of infected areas and the overall
infection status across the lungs. This decoded information is then synthesized
into a text description.

Location-based Attention Aggregation This module is designed to refine
sparse object predictions from the object decoder into location features by initial-
izing a location-specific query vector q. The process involves calculating attention
weights for each object prediction through matrix multiplication. Subsequently,
we derive the aggregated features A = softmax(XqT ) ·X by the linear combi-
nation of these weighted object predictions, where X denotes the input object
predictions.

3 Experiments

3.1 Dataset

The dataset used to evaluate our methodology was the QaTa-COV19 dataset [16]
4, the only publicly available chest X-ray dataset with text medical reports. It
comprises 9, 258 chest X-ray images of COVID-19 infections alongside segmenta-
tion annotations of corresponding infection regions. This dataset was augmented
by Li et al. by providing brief, structured, textual descriptions detailing the in-
fection site [14]. The dataset was partitioned adhering to the official split [15]
into 5, 716 for training, 1, 429 for validation, and 2, 113 for testing.

Subsequent refinement of the dataset 5 involved the correction of erroneous
descriptions, typographical errors, and ambiguous expressions, which impacted
4% of the data. Pseudo-labels were derived from textual annotations to provide
weak supervision of lesion localization.
4 The Qata-COVID-19 dataset used in this study can be accessed at the following

URL: https://www.kaggle.com/datasets/aysendegerli/qatacov19-dataset.
5 The refined dataset is available at https://github.com/ShuchangYe-

bib/SGSeg/tree/main/data
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Table 1. Performance comparison between our SGSeg and existing uni-modal and
multi-modal segmentation methods on the QaTa-COV19 dataset. The best results of
uni- and multi-modal methods are underlined. The results of our SGSeg are highlighted
in bold.

Modality Model Accuracy Dice Jaccard

Uni-Modal

U-Net[5] 0.945 0.819 0.692
U-Net++[7] 0.947 0.823 0.706
Attention U-Net[8] 0.945 0.822 0.701
Trans U-Net[9] 0.939 0.806 0.687
Swin U-Net[10] 0.950 0.832 0.724

Multi-Modal Train, Uni-Modal Inference SGSeg (ours) 0.971 0.874 0.778

Multi-Modal LViT[14] 0.962 0.837 0.751
LanGuideSeg[15] 0.975 0.898 0.815

3.2 Implementation Details

We used the image size of 224× 224 with a hidden dimension 768 in the cross-
attention module. PyTorch [24] and PyTorch Lightning [25] were used as the
development environment with NVIDIA RTX A6000 GPUs. For training, we
applied AdamW optimizer [26] with a cosine annealing learning rate policy (ini-
tial rate 3 × 10−4) and reduced it to < 1 × 10−6. The batch size was set to
32. Data augmentations, including random crops, masks, and rotations, were
applied.

4 Result and Discussion

4.1 Comparison with Existing Methods

To evaluate the SGSeg framework’s efficacy, comparative analyses were con-
ducted with current uni-modal and multi-modal segmentation models, as shown
in table 1. Results illustrate that SGSeg exceeds the performance of conven-
tional uni-modal methods and closely matches that of advanced multi-modal
approaches. Relative to the leading uni-modal inference model, our approach
achieved a notable enhancement in accuracy from 0.950 to 0.971 (2.21%), in
the Dice coefficient from 0.832 to 0.874 (5.05%), and in the Jaccard index from
0.724 to 0.778 (7.46%). However, when compared with the top-performing multi-
modal inference model, our method exhibited a slight decrease in accuracy by
0.41%, and reductions in the Dice coefficient and Jaccard index by 2.74% and
4.75%, respectively. Fig. 3 illustrated the significant impact of textual informa-
tion on enhancing segmentation accuracy, particularly in challenging cases. It
demonstrated that incorporating location-specific or pseudo-location data facil-
itates the model’s precision in identifying pathological areas. The SGSeg model
was trained to identify lesions through weak supervision provided by additional
textual data, compensating for the absence of textual descriptions at inference
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by autonomously generating this essential information. Consequently, the model
leveraged guidance from the detector to achieve enhanced segmentation out-
comes.
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Fig. 3. Comparative Analysis of Segmentation Results: Uni-modal vs. Multi-modal
Methods

4.2 Ablation Study

Table 2. Ablation studies on the impact of individual components in SGSeg: Without
text - uni-modal segmentation; Visual-language Pre-training - pre-trained with CLIP
and fine-tuned by uni-modal segmentation; Self-Guidance - using generated text as
input during inference; Full Text - using ground truth text as input during inference.

Accuracy Dice Jaccard

Without Text 0.953 0.846 0.725
Vision-language pre-training (CLIP) 0.962 0.850 0.740
Self-Guidance (simple report generation) 0.966 0.861 0.759
Self-Guidance (weakly-supervised LERG) 0.971 0.874 0.778
Full Text 0.973 0.890 0.797

Our framework leverages additional language information during training
while eliminating the need for textual input during inference. To demonstrate
the utility of synthetic text and validate our self-guided design, we conducted
an ablation study (Table 2). The results show that including additional textual
information significantly improves segmentation performance. Comparing vision-
language pre-training with our method, our multi-modal encoder-decoder train-
ing outperformed multi-modal encoder-focused pre-training. SGSeg significantly
outperformed methods without textual input and closely matched those using
ground truth text for inference. This indicates that our self-guidance framework
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effectively utilizes text for weak supervision during training and autonomously
generates text inputs for inference. Additionally, the proposed weakly super-
vised LERG module enhanced segmentation accuracy, underscoring the efficacy
of incorporating a location-aware pseudo-label extractor and a location-based
attention aggregator.
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Fig. 4. Comparative analysis on the relation between generated text and segmentation
outcomes

4.3 Visualization

We conducted an in-depth examination of the attention maps and the relation-
ship between the generated text and the segmentation outcomes. Our model
demonstrates accurate attention to lesions, which is fundamental to segmenta-
tion (see Fig. 5). Notably, the transition from exposure to ground truth text
during training to reliance on generated text during inference impacts segmen-
tation outcomes. Comparative analysis, as depicted in Fig. 4, indicates that
inaccuracies in generated reports moderately influence the model’s performance.

5 Conclusion

This study identified a crucial shortfall in current language-guided segmentation
methods: their reliance on textual inputs during inference diminishes their rel-
evance in clinical practice. To overcome this challenge, we analyzed the text’s
role in language-guided segmentation and proposed an innovative self-guided seg-
mentation framework tailored for text-free analysis. Experiments on the QaTa-
COV19 dataset showed that our SGSeg significantly outperformed existing uni-
modal image-only methods and closely approached the multi-modal methods
requiring text reports during inference.
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Fig. 5. Visualization of the model’s attention distribution over the input image ar-
ranged sequentially as follows: image, ground truth segmentation, attention map, and
attention map projected onto the image

Limitation A limitation of this study is its reliance on the QaTa dataset for
experiments. While the QaTa dataset is comprehensive and widely recognized
for language-guided segmentation tasks, the findings may not fully generalize to
other imaging modalities or datasets.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

References

1. J. Ma, Y. He, F. Li, L. Han, C. You, and B. Wang, “Segment anything in medical
images,” Nature Communications, vol. 15, no. 1, pp. 654, 2024, Nature Publishing
Group UK London.

2. Nillmani, N. Sharma, L. Saba, N. N. Khanna, M. K. Kalra, M. M. Fouda, and J.
S. Suri, “Segmentation-Based Classification Deep Learning Model Embedded with
Explainable AI for COVID-19 Detection in Chest X-ray Scans,” Diagnostics, vol.
12, no. 9, article 2132, 2022.

3. T. Mahmood, A. Rehman, T. Saba, L. Nadeem, and S. A. O. Bahaj, “Recent ad-
vancements and future prospects in active deep learning for medical image segmen-
tation and classification,” IEEE Access, 2023, IEEE.

4. S. Asgari Taghanaki, K. Abhishek, J. P. Cohen, J. Cohen-Adad, and G. Hamarneh,
“Deep semantic segmentation of natural and medical images: a review,” Artificial
Intelligence Review, vol. 54, pp. 137–178, 2021, Springer.

5. O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional networks for
biomedical image segmentation,” in Medical Image Computing and Computer-
Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Ger-
many, October 5-9, 2015, Proceedings, Part III 18, pp. 234–241, 2015, Springer.

6. N. Siddique, S. Paheding, C. P. Elkin, and V. Devabhaktuni, “U-Net and its variants
for medical image segmentation: A review of theory and applications,” IEEE Access,
vol. 9, pp. 82031–82057, 2021, IEEE.

7. Z. Zhou, M. M. Rahman Siddiquee, N. Tajbakhsh, and J. Liang, “Unet++: A nested
u-net architecture for medical image segmentation,” in Deep Learning in Medical
Image Analysis and Multimodal Learning for Clinical Decision Support: 4th Inter-
national Workshop, DLMIA 2018, and 8th International Workshop, ML-CDS 2018,
Held in Conjunction with MICCAI 2018, Granada, Spain, September 20, 2018, Pro-
ceedings 4, pp. 3–11, 2018, Springer.



10 S. Ye et al.

8. O. Oktay, J. Schlemper, L. L. Folgoc, M. Lee, M. Heinrich, K. Misawa, K. Mori, S.
McDonagh, N. Y. Hammerla, B. Kainz, et al., “Attention u-net: Learning where to
look for the pancreas,” arXiv preprint arXiv:1804.03999, 2018.

9. J. Chen, Y. Lu, Q. Yu, X. Luo, E. Adeli, Y. Wang, L. Lu, A. L. Yuille, and Y. Zhou,
“Transunet: Transformers make strong encoders for medical image segmentation,”
arXiv preprint arXiv:2102.04306, 2021.

10. H. Cao, Y. Wang, J. Chen, D. Jiang, X. Zhang, Q. Tian, and M. Wang, “Swin-unet:
Unet-like pure transformer for medical image segmentation,” in European conference
on computer vision, pp. 205–218, 2022, Springer.

11. Y. Huang, C. Du, Z. Xue, X. Chen, H. Zhao, and L. Huang, “What makes multi-
modal learning better than single (provably),” Advances in Neural Information Pro-
cessing Systems, vol. 34, pp. 10944–10956, 2021.

12. Z. Gan, L. Li, C. Li, L. Wang, Z. Liu, J. Gao, et al., “Vision-language pre-training:
Basics, recent advances, and future trends,” Foundations and Trends®in Computer
Graphics and Vision, vol. 14, no. 3–4, pp. 163–352, 2022, Now Publishers, Inc.

13. A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry,
A. Askell, P. Mishkin, J. Clark, et al., “Learning transferable visual models from
natural language supervision,” in International Conference on Machine Learning,
pp. 8748–8763, 2021, PMLR.

14. Z. Li, Y. Li, Q. Li, P. Wang, D. Guo, L. Lu, D. Jin, Y. Zhang, and Q. Hong,
“Lvit: language meets vision transformer in medical image segmentation,” IEEE
Transactions on Medical Imaging, 2023, IEEE.

15. Y. Zhong, M. Xu, K. Liang, K. Chen, and M. Wu, “Ariadne’s Thread: Using Text
Prompts to Improve Segmentation of Infected Areas from Chest X-ray Images,”
in International Conference on Medical Image Computing and Computer-Assisted
Intervention, pp. 724–733, 2023, Springer.

16. A. Degerli, S. Kiranyaz, M. E. H. Chowdhury, and M. Gabbouj, “Osegnet: Opera-
tional Segmentation Network for Covid-19 Detection Using Chest X-Ray Images,”
in 2022 IEEE International Conference on Image Processing (ICIP), pp. 2306-2310,
2022, doi: 10.1109/ICIP46576.2022.9897412.

17. Z. Liu, H. Mao, C.-Y. Wu, C. Feichtenhofer, T. Darrell, and S. Xie, “A convnet for
the 2020s,” in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 11976–11986, 2022.

18. J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv preprint
arXiv:1810.04805, 2018.

19. B. Boecking, N. Usuyama, S. Bannur, D. C. Castro, A. Schwaighofer, S. Hyland, M.
Wetscherek, T. Naumann, A. Nori, J. Alvarez-Valle, H. Poon, and O. Oktay, “Making
the Most of Text Semantics to Improve Biomedical Vision-Language Processing,”
arXiv preprint arXiv:2204.09817, 2022. https://arxiv.org/abs/2204.09817

20. R. J. G. B. Campello, D. Moulavi, and J. Sander, “Density-based clustering based
on hierarchical density estimates,” in Pacific-Asia Conference on Knowledge Dis-
covery and Data Mining, pp. 160–172, 2013, Springer.

21. W. Lv, S. Xu, Y. Zhao, G. Wang, J. Wei, C. Cui, Y. Du, Q. Dang, and
Y. Liu, “DETRs Beat YOLOs on Real-time Object Detection,” arXiv preprint
arXiv:2304.08069, 2023.

22. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-
nition,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 770–778, 2016.



SGSeg 11

23. J. Bertels, T. Eelbode, M. Berman, D. Vandermeulen, F. Maes, R. Bisschops, and
M. B. Blaschko, “Optimizing the dice score and jaccard index for medical image
segmentation: Theory and practice,” in Medical Image Computing and Computer
Assisted Intervention–MICCAI 2019: 22nd International Conference, Shenzhen,
China, October 13–17, 2019, Proceedings, Part II 22, pp. 92–100, 2019, Springer.

24. A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, et al., “Pytorch: An imperative style, high-performance
deep learning library,” Advances in neural information processing systems, vol. 32,
2019.

25. W. A. Falcon, “Pytorch lightning,” GitHub, vol. 3, 2019.
26. I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,” arXiv

preprint arXiv:1711.05101, 2017.


