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Abstract. Reconstructing 3D volumes from optical microscopic images
is useful in important areas such as cellular analysis, cancer research, and
drug development. However, existing techniques either require special-
ized hardware or extensive sample preprocessing. Recently, Yamaguchi
et al. [20] proposed to solve this problem by just using a single stack
of optical microscopic images with different focus settings and recon-
structing a voxel-based representation of the observation using the clas-
sical iterative optimization method. Inspired by this result, this work
aims to explore this method further using new state-of-the-art optimiza-
tion techniques such as Deep Image Prior (DIP). Our analysis showcases
the superiority of this approach over Yamaguchi et al. [20] in recon-
struction quality, hard metrics, and robustness to noise on the synthetic
data. Finally, we also demonstrate the effectiveness of our approach on
real data, producing excellent reconstruction quality. Code available at:
https://github.com/caiocj1/multifocus-3d-reconstruction.

Keywords: Multi-focus Microscopy · Deep Image Prior · 3D Recon-
struction.

1 Introduction

Microscopic images have revolutionized our understanding of the biological pro-
cesses within various life forms. However, this type of imaging typically ignores
vital information encoded in the depth dimension. Avoiding this loss of informa-
tion is the motivation behind volumetric imaging techniques, which have been a
valuable tool to unlock many insights in fields ranging from cancer research and
cellular analysis to drug development [4, 3, 17, 19]. The importance, therefore, of
developing more accurate and efficient volumetric reconstruction approaches can
hardly be overstated.

Various methods have been proposed to capture the volumetric structure of
microscopic observations using confocal and electron microscopy techniques [13].
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However, the methods based on these techniques often require specialized hard-
ware and extensive preprocessing of samples, which can be expensive and time-
consuming. Ideally, we would like to obtain high-fidelity 3D reconstructions using
classical imaging techniques such as standard bright-field microscopy, which has
become ubiquitous for its relatively simple but effective design.

Although recovering the depth information from a single image is known
to be an ill-posed problem [11] when using multiple images, the problem be-
comes relatively easy to solve and is well-studied; for example, methods focusing
on multi-view images [6] and multi-focus images [12, 15]. However, one impor-
tant drawback of these computer vision-based methods is their general focus
on opaque objects. This limits their application to our case, where we need to
estimate the volumetric structure of translucent objects (e.g., cells), requiring
specialized methods to be developed. Given this context, the question arises:

Can we utilize multiple optical microscopic images to recover the 3D repre-
sentation of observations?

One of the easiest ways to capture multiple images using an optical micro-
scope is by varying its focus. Recently, Yamaguchi et al. [20] first explored this
idea by modeling the imaging process of samples by an optical microscope with
different focus settings and subsequently reconstructing the 3D volume with the
help of an iterative optimization method. Their is compatible with bright-field
microscopy and can reconstruct high-quality 3D models from a single, easily
obtainable multi-focus stack of images.

Our work revisits Yamaguchi et al. [20] and improves it in the following
ways: first, we propose a benchmark dataset from the Open-Scivis [10] database
by selecting samples with varying complexity of shape and sizes and investigate
Yamaguchi et al.’s capabilities in reconstructing 3D volumes of samples on this
dataset and show that it performs poorly as the complexity of the sample in-
creases. We identify that the classical iterative optimization method is a major
reason for this poor performance. Next, to solve these issue, we reformulate the
problem of “3D volume reconstruction from multi-focus microscopic images” in
the Deep Image Prior (DIP) [16] framework. Our choice of DIP approach to
solve this problem is motivated by the following facts: First, the 3D ground-
truths of the observed samples are hard to develop. Second, without any ground
truths, the DIP approach has proven to be a good candidate for solving inverse
problems like ours. Please refer to Figure 1 and Section 3, for our detailed for-
mulation of this problem using DIP. Finally, our analysis of DIP for 3D volume
reconstruction shows that the reconstruction quality improves quantitatively and
qualitatively, even on complex samples.

2 Related Work

This section discusses various 3D reconstruction methods based on DIP. We also
review the existing methods for 3D reconstruction from multi-focus images.

The prospects of DIP have encouraged its use in various 3D reconstruction
tasks, especially in medical imaging. For example, Zhou et al. [22] used the
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Fig. 1. Illustration of our optimization using DIP (left) and imaging model (right).

DIP framework to effectively address the missing-cone problem in diffraction
tomography, improving reconstruction quality. Gong et al. [5] introduced the
use of the DIP framework for reconstructing 3D PET images. Later, Hashimoto
et al.[7] built upon the work of Gong et al. [5] by introducing an end-to-end block
training framework combined with a differentiable forward model. Barbano et
al.[2] explored various pretraining schemes that lead to significant speed-ups
and greatly enhanced training stability on the task of micro-CT reconstruction.
In this work, our focus is to use the DIP framework to reconstruct volumetric
structures using multi-focus images from an optical microscope.

In the past, reconstruction of 3D structures from multi-focus microscopic
images has been attempted in various ways. For example, Abrahamsson at al.
[1] introduced a mechanism to obtain a stack of multi-focus images instantly
(instead of sequentially taking new pictures, which is detrimental to alignment),
and reconstructed a 3D model from it by extracting the in-focus regions in each
image. Since this leads to high blur in out-of-focus areas, Yoo et al.[21] proposed
two algorithms that use multiple frames of multi-focus stacks to improve recon-
struction quality. Note that the above two works are intended for fluorescence
microscopy, and unlike these works, we are interested in general bright-field mi-
croscopy which was recently first explored by Yamaguchi et al. [20] as discussed
in Section 1. We build upon this work and introduce a DIP-based framework to
improve it further.
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3 Methodology

In this work, we aim to estimate the volumetric structure of a translucent sample
via a voxel-based representation utilizing only multi-focus images from an optical
microscope. Mathematically, we wish to compute a 3D grid of transmittance
values αi ∈ [0, 1], where i = 0, 1, · · · , Nv − 1 as shown in Figure 1(right). Here,
Nv is the total number of voxels in the 3D grid. We utilize the imaging model
described in Yamaguchi et al. [20] to synthesize multi-focus images from the 3D
grid of transmittance estimates and guide the estimation process by comparing
the synthesized images with the ones acquired from a real optical microscope.

Imaging Model. The imaging model works by considering the light as a set
of discrete Nr rays that get attenuated as they pass through the 3D grid of Nv

voxels, as shown in Figure 1(right). Here, it is assumed that each ray of light gets
attenuated solely due to the transmittance values of the voxels and the distance
it travels in each voxel in the 3D grid. Mathematically, let lj and l′j be the initial
and final intensities of the j-th ray of light, respectively. Let dji be the distance
the j-th ray traverses inside a voxel at index i. Note that the j-th ray traverses
through multiple voxels at different angles (possibly not all); hence, the dji for
each voxel varies. Also, it gets attenuated as it passes through a voxel according
to its transmittance value. Thus, the degree of attenuation of j-th ray depends
on which voxels it passes, their transmittance values, and how much distance
it travels in each voxel, which can be modeled using Equation 1. Now, assume
s represents the focus setting under which an image is taken. After focusing
through the 3D grid, the light rays diverge and, through a convergent lens,
are refocused at one pixel Iα(x, y, s). Also, an arbitrary pixel can be similarly
expressed by shifting the stage along with (x, y, s) coordinates. So, the intensity
of a pixel can be computed as the sum of all the final intensities as depicted in
Equation 2.

l′j = lj
∏
i

α
dji

i . (1) Iα(x, y, s) =
∑
j

l′j . (2)

Deep Image Prior (DIP) Based Method. Figure 1 (left) illustrates the DIP-
based formulation of our problem. Similar to iterative optimization, in our DIP-
based approach [16], we minimize the difference between the estimate and the
target but without any explicit regularization term. Note that a CNN generates
the estimate here, implicitly performing the regularization. Following this idea,
we utilize a 3D UNet [14] that takes a random noisy 3D grid as input (which stays
fixed during training) and outputs a 3D grid of transmittance estimates, which
is then passed through the imaging model to get the simulated images Iα. This
is followed by minimizing following L1 loss to optimize the 3D UNet parameters
θ: LDIP (θ) = ∥Iα − I∥1. Here, I is the stack of multi-focus images of the real
sample captured by the optical microscope. By updating the parameters, the
3D UNet can reconstruct a 3D grid of transmittance values to produce images
similar to the observations.
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Fig. 2. GT volume generation pipeline and example visualization of a sample.

Pretraining of DIP Network. It is well established that DIP can benefit
from the better initialization of 3D UNet in terms of computational speed-up
and better overall reconstruction quality [2]. With this in mind, we propose two
pretraining strategies for the DIP framework.

Pretr I Pretr I is a reconstruction task where we train the 3D UNet in the DIP
framework to fit a ground-truth 3D volume of ellipsoids from a 3D volume of
random noise using L2 loss. Using a 3D volume of ellipsoids for reconstruction is
motivated by [2], which suggests that ellipsoids constitute good building blocks
of complex shapes while being adjusted to fit the volume statistics of objects such
as cells. After pretraining, 3D transmittance volume is estimated by initializing
the 3D UNet input and its parameters from the above pretraining step.

Pretr II Pretr II is a supervised denoising task. This strategy is a simplified
version of the approach used in [2], consisting of a supervised denoising task using
the same 3D ellipsoids data as discussed above. We first generate a thousand
pairs of noised-denoised 3D volumes of ellipsoids. Next, we train the 3D UNet
in the DIP framework to remove noise from the 3D volume of ellipsoids using
L2 loss. After pretraining, 3D transmittance volume is estimated by initializing
the 3D UNet parameters from the above pretraining step for further training.
Details on the construction of the synthetic dataset of 3D volume of ellipsoids
are provided in the Supplementary.

In our experiments, whenever one of the two pretraining tasks is not used, we
fit the network to a constant value c to stabilize the subsequent training before
performing reconstruction on one sample.

Stopping Criterion. When reconstructing from real microscopic images, over-
fitting to the noise present in the image inevitably occurs unless some stopping
criterion is adopted. To solve this issue, we use early-stopping proposed in [18],
which tracks the minimal windowed moving variance of the reconstruction se-
quence and stops the training if it doesn’t decrease after certain iterations.
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Sample Iter DIP (No Pretr) DIP + Pretr I DIP + Pretr II
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Aneurism 37.80 0.9863 50.35 0.9992 51.98 0.9994 51.54 0.9993
Backpack 40.02 0.9876 40.55 0.9890 41.07 0.9902 42.00 0.9917
Beechnut 46.54 0.9953 45.23 0.9934 45.72 0.9942 45.63 0.9940
Teapot 44.20 0.9951 45.68 0.9967 46.83 0.9975 46.57 0.9972
Chameleon 41.08 0.9880 43.53 0.9934 43.92 0.9940 44.01 0.9942
Heptane 49.31 0.9981 49.63 0.9985 49.99 0.9986 51.14 0.9988
Engine 38.36 0.9890 45.50 0.9977 44.59 0.9973 45.95 0.9979
Foot 37.90 0.9831 37.47 0.9771 37.82 0.9776 37.33 0.9765
Kingsnake 40.15 0.9839 43.86 0.9918 43.81 0.9922 44.02 0.9922
Lobster 39.25 0.9821 39.67 0.9850 39.46 0.9847 39.75 0.9852
MRI 39.26 0.9942 40.14 0.9852 40.18 0.9857 40.24 0.9856
MRT Angio 45.68 0.9942 44.15 0.9918 44.31 0.9922 44.31 0.9923
Pancreas 43.00 0.9921 44.59 0.9947 45.41 0.9955 44.59 0.9950

Average 41.73 0.9892 43.87 0.9918 44.24 0.9922 44.39 0.9923

Table 1. Detailed quantitative results from zero-noise 128× 128 synthetic images.

4 Experiments

4.1 Experimental Setup

Dataset. Due to the absence of any benchmark dataset for our task, we gener-
ate a dataset comprising of 13 synthetic 3D volume ground truths (GTs) using
samples from Open-Scivis [10]. The names of the 13 samples are given in Table 1.
A visualization of the samples is provided in the Supplementary. Note that the
13 samples are selected for their varying complexity of shape and size. Figure 2
illustrates the pipeline of the synthetic 3D volume GT generation process from
the Open-Scivis sample, which is as follows: First, we rescale the samples using
trilinear interpolation to smaller sizes. We then normalize the data so that all
points in the voxels lie in the range [0.7, 1.0], ensuring that the light reaches the
image sensor after passing through the voxels; models with too low transmittance
values would produce only black images. Finally, we extract either 50×50×11 or
128× 128× 11 GT volumes so that we can compare how the models perform on
more or less complex images. Note that in Figure 2 the z-th volume slice appears
in the z-th observed image as the region most in focus. For reproducibility, we
also provide the script for the above process in the Supplementary. The synthetic
3D volume GTs are passed through the imaging model to obtain the “observed”
images that will be used to reconstruct the desired 3D representation.

Implementation Details. We use Adam optimizer with standard parameters
[9] and train on a single NVIDIA V100 32GB GPU for 30 thousand optimization
steps. For the iterative optimization method, we use µ = 10−3 as the balancing
coefficient of the TV loss, and a constant learning rate γ = 5·10−3. For DIP-based
method, a constant learning rate γ = 10−3 is used. Supplementary Document
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shows the architecture of the 3D U-Net in use. Before performing reconstructions
with basic DIP (without any pretraining), the initial input noise is fitted to
a constant voxel grid of value c = 0.75 for 500 steps. We observe that this
helps to stabilize the network, as mentioned earlier. Pretr I is performed for 750
optimization steps. Pretr II uses a small dataset of 1000 samples, and training
is performed using a batch size of 20 for 5 epochs.

4.2 Results and Analysis

Quantitative Results. In Table 1, we compare the performance of the iterative
method (Iter) [20] and our DIP-based method without any pertaining (No Pretr),
Pretr I and Pretr II on 128× 128. Note that the results correspond to the zero-
noise setting. Additionally, the results corresponding to smaller 50 × 50 images
are also provided in Supplementary. We analyze the peak signal-to-noise ratio
(PSNR) and structural similarity (SSIM) metrics between reconstructions and
ground-truth volumes [8]. We observe that the DIP method widely surpasses
the iterative method, with at least 2.14 dB of advantage. We also remark that
pretraining DIP improves PSNR by 0.37 dB (Pretr I) and 0.52 dB (Pretr II)
over the No Pretr DIP method.

Qualitative Results. In order to have a fuller comprehension of the difference
in reconstruction quality between the methods, Figure 3 compares individual
slices of the 3D volumes for different samples of the Open-Scivis dataset. Darker
pixels indicate voxels with lower transmittance values. Note that the iterative
method tends to blur object edges, considerably lowering reconstruction quality.

Robustness Analysis. We compare our method’s performance in a more re-
alistic setting by adding centered Gaussian noise with varying variance σ to the
observed images. Results are shown in Table 2. All DIP-based settings vastly im-
prove on the previous iterative method: basic DIP has an advantage of 4.21 dB
and 3.96 dB for σ = 0.01 and 0.02, respectively. The benefit from the pretraining
is greater when using less noisy images: although for σ = 0.02, we get advan-
tages of only 0.02 and 0.07 dB using Pretr. I and II, respectively, for σ = 0.01,
we achieve more substantial improvement upon basic DIP, 0.15 and 0.21 dB.

Method σ = 0.01 σ = 0.02
PSNR SSIM PSNR SSIM

Iter [20] 35.44 0.9671 34.28 0.9595
DIP 39.65 0.9818 38.24 0.9775
DIP + Pretr. I 39.80 0.9821 38.26 0.9773
DIP + Pretr. II 39.86 0.9824 38.31 0.9776

Table 2. Robustness analysis of proposed approach compared to the Iterative method.
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DIP + Early Stopping

Sample PSNR SSIM Ratio Time Itr.

Aneurism 44.38 0.9964 98.95 36 5362
Backpack 34.57 0.9693 98.27 36 4991
Beechnut 42.90 0.9881 99.67 14 2100
Teapot 41.70 0.9921 99.98 42 6279
Chameleon 38.57 0.9802 99.18 15 2319
Heptane 47.45 0.9974 99.52 22 3241
Engine 36.84 0.9888 97.36 19 2861
Foot 34.82 0.9570 99.37 47 6916
Kingsnake 37.13 0.9729 99.23 17 2577
Lobster 35.28 0.9712 99.80 33 4949
MRI 36.20 0.9648 99.23 34 5090
MRT Angio 41.66 0.9856 99.57 8 1271
Pancreas 38.51 0.9730 96.06 24 3566

Average 39.23 0.9798 98.94 27 3963

Table 3. Performance of early-stopping algo-
rithm with DIP, using Gaussian-noised images
with σ = 0.01. The ratio indicates PSNR on
the detected stopping point divided by the
maximum achieved in the training process.
Time is wall-clock time taken in minutes.

Fig. 3. Qualitative comparison of volume
slices between basic DIP model and itera-
tive method for four samples of our evalu-
ation dataset. Samples were chosen to fa-
cilitate the visualization of differences.

Early-Stopping Analysis. We simulate a realistic setting and test whether
the stopping criterion adopted can propose adequate checkpoints. For this, we
again use noisy images with σ = 0.01 and record the stopping point for each
sample. Results are shown in Table 3. With minimal parameter tuning, notice
that the early-stopping algorithm can achieve close-to-optimal performance.

Evaluation on Real Data. Finally, we reconstruct 3D volumes from real cell
images from an internal dataset to validate our approach using early stopping.
The results are shown in Figure 4. Our DIP-based approach can correctly identify
the lower transmittance values in different parts of the cell’s structure, especially
its nucleus. It can also place structures in intermediary depths, representing them
in 3D space. Additionally, DIP gives sharp edges, fewer artifacts, and sharper
contrast between object and background compared to the iterative method.

5 Conclusion

In this work, we revisit Yamaguchi et al.’s [20] method for 3D volume reconstruc-
tion from multi-focus optical microscopy images and explore DIP for optimiza-
tion. We demonstrate that DIP improves the reconstruction quality significantly,
both qualitatively and quantitatively. Furthermore, we propose pretraining tasks
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Fig. 4. Reconstruction results on real cell images using Iterative (left) and DIP (right)
methods. For each method, a top and side view of the reconstructed 3D cell is presented.

that can circumvent weaknesses inherent to DIP-based approaches and help us
achieve even higher reconstruction quality.
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