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Abstract. In neuroimaging, generally, brain CT is more cost-effective
and accessible imaging option compared to MRI. Nevertheless, CT ex-
hibits inferior soft-tissue contrast and higher noise levels, yielding less
precise structural clarity. In response, leveraging more readily available
CT to construct its counterpart MRI, namely, medical image-to-image
translation (I2I), serves as a promising solution. Particularly, while diffu-
sion models (DMs) have recently risen as a powerhouse, they also come
with a few practical caveats for medical I2I. First, DMs’ inherent stochas-
ticity from random noise sampling cannot guarantee consistent MRI gen-
eration that faithfully reflects its CT. Second, for 3D volumetric images
which are prevalent in medical imaging, naïvely using 2D DMs leads
to slice inconsistency, e.g., abnormal structural and brightness changes.
While 3D DMs do exist, significant training costs and data dependency
bring hesitation. As a solution, we propose novel style key conditioning
(SKC) and inter-slice trajectory alignment (ISTA) sampling for the 2D
Brownian bridge diffusion model. Specifically, SKC ensures a consistent
imaging style (e.g., contrast) across slices, and ISTA interconnects the
independent sampling of each slice, deterministically achieving style and
shape consistent 3D CT-to-MRI translation. To the best of our knowl-
edge, this study is the first to achieve high-quality 3D medical I2I based
only on a 2D DM with no extra architectural models. Our experimental
results show superior 3D medical I2I than existing 2D and 3D baselines,
using in-house CT-MRI dataset and BraTS2023 FLAIR-T1 MRI dataset.

Keywords: Image-to-image translation · Volumetric image synthesis ·
Brownian bridge diffusion model · Brain CT-to-MRI

1 Introduction

Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) scans are
crucial in diagnosing and treating various medical conditions [7, 18], each with
its own pros and cons. CT quickly delivers tissue conditions and attenuation
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Fig. 1. Examples of slice inconsistency and resolved outcomes. This figure
shows coronal views of volumes synthesized by two 2D BBDMs trained on axial slices.
The pure multi-slice 2D BBDM exhibits severe slice inconsistency, with noticeable dis-
continuities in both style and shape across slices. Our method produces slice-consistent
volumes and can adjust the intensity histogram (i.e., style).

maps but struggles with detailed soft-tissue imaging [12]. Conversely, MRI offers
outstanding soft-tissue clarity but comes with higher costs and longer acquisition
times compared to CT [21]. This juxtaposition between CT and MRI sets the
stage for exploring synthesized MRI from CT images in scenarios where only
CT is available [17]. Obtaining MRI without additional scan enhances cost-
efficiency and diagnostic accuracy, especially in practices like positron emission
tomography/computed tomography (PET/CT) scan readings, where MRI’s clear
anatomical details improves brain scan interpretations [10]. However, CT scans
present some anatomical details subtly due to their lower soft-tissue contrast
and higher noise levels [3], presenting a challenge in synthesizing faithful MRI
from CT. This task can be defined as a image-to-image translation (I2I), which
has key implications as it enables critical medical imaging tasks to be addressed,
such as super-resolution [8], denoising [9], and multi-modal synthesis [19].

Recently, diffusion models (DMs), a type of deep generative model, have been
increasingly favored in various medical imaging tasks [19, 25, 9], thanks to their
ability to produce high-quality and diverse samples [11, 31]. However, in medi-
cal I2I like CT-to-MRI translation, where it is essential for synthetic images to
reliably reflect the structure of source images, DMs struggle to produce consis-
tent outcomes due to their inherent stochasticity. Even using deterministic sam-
plers like DDIM [28], their reliance on sampling from random noise introduces
uncertainty, undermining reproducibility and medical reliability. Therefore, we
performed medical I2I based on the Brownian Bridge Diffusion Model (BBDM
[20]), which specifies the theoretical mapping between source and target data
distributions through a diffusion process directly on the source image itself.

Meanwhile, medical imaging often involves 3D volumetric images. However,
applying naïve 3D models to high-resolution volumes is impractical, due to the
massive computational, memory, and data requirements [32]. As a solution, ap-
proaches based on latent diffusion models (LDMs), which compress the latent
space using an autoencoder to train 3D LDMs, have been proposed [32, 19].
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However, the image quality of LDM relies on its 3D autoencoder, which faces
challenges in achieving satisfactory performance on high-dimensional data and
is still costly for ordinary GPUs in memory usage [23, 13].

An alternative of using 2D models for slice-wise generation exists. However,
this leads to slice inconsistency within a volume, as seen in Fig. 1, which can
be defined in two aspects: style (e.g., brightness and contrast) and shape (e.g.,
structural discontinuities in 3D views). In this paper, we aim to address this
slice inconsistency issue in 2D models through two novel methods. (1) Style
Key Conditioning (SKC): We condition the DM with the MRI’s histogram
to enable it to learn the mapping between the histogram and the actual imaging
style. By controlling the style of the generated slices through the histogram,
we not only ensure style consistency but also enable the free manipulation of
the target MRI’s style. (2) Inter-Slice Trajectory Alignment (ISTA): We
ensure consistency in both style and shape by enabling adjacent slices to sample
along a jointly agreed-upon trajectory, while still allowing for parallel slice-wise
inference within each batch. Specifically, ISTA aggregates the multiple outputs
from the model to co-predict the direction of the next time step for each slice
and deterministically corrects the transition error from the co-prediction.

Contributions. Our main contributions are as follows: (i) Through our pro-
posed SKC and ISTA, we performed slice-consistent 3D volumetric brain CT-to-
MRI translation using a 2D DM. (ii) By combining our approach with BBDM,
we achieved fully deterministic and reliable medical I2I, with the target vol-
ume’s structure and style dictated only by the source volume and histogram-
based condition, respectively. (iii) Using in-house CT-MRI dataset and public
FLAIR-T1 MRI dataset from BraTS2023, we demonstrate that proposed 2D-
based method performs superior cross-modality I2I compared to existing 2D
and 3D baseline models. To the best of our knowledge, this is the first study
to achieve high-quality 3D medical I2I based only on a 2D DM with no extra
architectural models like autoencoders. The code for our project can be accessed
at https://github.com/MICV-yonsei/CT2MRI.

2 Methods

In this section, we first briefly explore BBDM (Sec. 2.1). Then, we detail the
multi-slice training strategy with SKC for global style consistency (Sec. 2.2) and
ISTA sampling technique for local consistency both in style and shape (Sec. 2.3).

2.1 Preliminaries: 2D Brownian Bridge Diffusion Model

BBDM redefines the diffusion model within the framework of a Brownian bridge
to generalize the source distribution from Gaussian to any arbitrary distribution,
making it suitable for I2I. Let (x,y) be any source and target image pair, then
the forward Brownian bridge diffusion process at time step t is defined based on
x0 = x (e.g., the target MRI slice) and xT = y (e.g., the source CT slice) as

qBB(xt|x0,y) = N (xt; (1−mt)x0 +mty, δtI), (1)
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(b) Target Volume Sampling with SKC and ISTA(a) Training Multi-slice BBDM with SKC
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Fig. 2. Training and sampling scheme of the proposed methods. (a) During
the multi-slice BBDM training, a target histogram-based style key is injected into the
U-Net. (b) Target volume sampling proceeds in the manner of the Predictor-Corrector
method. During the co-prediction phase, multiple ϵi,kθ,t are employed to establish con-
nections among the predicted slices within X̄t−1. In the subsequent correction phase,
the co-predicted volume is refined through a score-guided deterministic process.

where δt = 2s(mt − m2
t ) is the variance with scale factor s for the sampling

diversity, and mt = t/T . The Gaussian transition kernel of the forward Markov
process qBB(xt|xt−1,y), with variance δt|t−1 = δt − δt−1(1−mt)

2/(1−mt−1)
2,

can be easily derived through Eq. (1). Similar to DDPM [14], the forward process
posterior qBB(xt−1|xt,x0,y) can be derived in closed form of Gaussian with
variance δ̃t = δt|t−1 · δt−1/δt and mean µ̃t(xt,x0,y) = cxtxt+ cyty+ cϵt(mt(y−
x0)+

√
δtϵ) for some coefficient cxt, cyt, and cϵt. The reverse process is defined as

pθ(xt−1|xt,y) = N (xt−1;µθ(xt, t), δ̃tI), where µθ(xt, t) is the predicted mean
by the model, and the variance δ̃t uses the same value as qBB(xt−1|xt,x0,y). The
model parameters θ are trained to make the distribution of qBB(xt−1|xt,x0,y)
and pθ(xt−1|xt,y) identical, using a simplified evidence lower bound (ELBO) as

Ex0,y,ϵ[cϵt||mt(y − x0) +
√
δtϵ− ϵθ(xt, t)||22], (2)

where ϵ ∼ N (0, I) is sampled random noise and ϵθ is the noise estimator model.
A notable aspect in Eq. (2) is that, the prediction ϵθ(xt, t) includes not just
random noise ϵ. We have also observed that incorporating the guiding term
mt(y−x0) +

√
δtϵ, which is the direction pointing to xt from the predicted x0,

improves performance over solely training the model to predict pure ϵ practically.

2.2 Training Multi-slice 2D BBDM with Style Key Conditioning

When the 2D BBDM is naïvely trained slice-wise, the uneven brightness or con-
trast is observed globally in the synthetic MRI (Fig. 1), which we call global style
inconsistency. This occurs due to the target MRI in the training data exhibiting
various styles, even for similar sources. To address global style inconsistency,
we conditioned the model with a style key that uniquely matches each target



Slice-Consistent 3D CT2MRI with 2D Brownian Bridge Diffusion Model 5

Direction by 𝝐!,#$%
&,'

Co-prediction by 𝝐!,#$%&

Correction

Manifold of 𝒙!"#$ Manifold of 𝒙!$

!𝒙!"
𝒙!"

𝑘 =
1

𝑘 = 3

𝑘 =
2

𝒙!#$"

Co-prediction

Correction
Averaged direction

Fig. 3. Visualization of the latent space and algorithm for ISTA sampling.
The trained U-Net produces inconsistent outputs for multi-slice inputs that include the
ith slice. The co-prediction unifies the direction of these independent inferences, while
the correction aligns the co-predicted x̄i

t onto the manifold of xi
t.

style, which also allows us to freely control the style of the generated slice. We
discovered that the intensity histogram of an MRI volume can serve as an ideal
style key because it vividly reflects imaging style while being invariant to an
individual’s anatomy. Consequently, we trained a 2D BBDM, conditioning on
MRI histogram-based style keys (Fig. 2a), employing a multi-slice input-output
approach (1) to utilize the information from adjacent slices and (2) to compile
multiple predictions for a single slice at each ISTA sampling step.

From now on, we define the notations as follows: X,Y ,Xt ∈ RZ×H×W

represent complete MRI, CT, and latent volumes, xi,yi,xi
t ∈ RH×W are the ith

slices of these volumes, and Xi,Y i,Xi
t ∈ R(2N+1)×H×W denote sub-volumes of

the ith index and its adjacent 2N slices (e.g., Xi = [xi−N ,xi−N+1, . . . ,xi+N ]).
Our objective for training multi-slice 2D BBDM modifies Eq. (2) as follows:

EXi
0,Y

i,ϵ[cϵt||mt(Y
i −Xi

0) +
√
δtϵ− ϵθ(X

i
t , cSKC , t)||22], (3)

where ϵ, ϵθ(·) always share the same dimensions as the volume or slice input
and cSKC ∈ R3×B is a set of three 1D histograms of target MRI volume X (i.e.,
histogram, cumulative histogram, and histogram differential), each with B bins.
For testing, the histogram of any MRI with desired style can be used as cSKC .
We set N = 1 and B = 128 which suffice our task with minimal extra cost.

2.3 Target Volume Sampling with Inter-slice Trajectory Alignment

While SKC addresses global style inconsistencies, it does not directly combat the
local slice inconsistency, which refers to style or shape discontinuities between ad-
jacent slices. We resolve the local slice inconsistency by chaining all slices inside
a volume exclusively within the 2D sampling process, without relying on any
additional training beyond minimal multi-channel (i.e., 3-slice) burden. ISTA
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Fig. 4. Qualitative comparison with baselines (CT→MRI)

aligns the trajectories of adjacent slices during sampling to integrate indepen-
dent inference outputs, ensuring it remains fully deterministic and parallel like
BBDM. Similar to the Predictor-Corrector method in [2], each ISTA sampling at
time step t involves two steps (Fig. 2b and Fig. 3): co-prediction and correction.

Co-prediction. ISTA sampling utilizes all predicted ϵi,kθ,t := ϵθ(x
i,k
t , cSKC , t) ∈

RH×W for the ith slice of a volume obtained by the overlapping inference at time
step t (k ∈ {1, 2, . . . , 2N+1}). First, we aggregate the 2N+1 predictions for the
ith slice into a single prediction ϵiθ,t := Ek[ϵ

i,k
θ,t]. Subsequently, we concatenate all

ϵiθ,t to obtain the aggregated prediction volume Eθ,t. For an input volume Xt,
the process of co-predicting a single volume Eθ,t ∈ RZ×H×W using multiple ith

slice’s outputs from the trained multi-slice model will be defined as CPθ:

Eθ,t = CPθ(Xt, cSKC , t) :=
[
ϵ1θ,t, ϵ

2
θ,t . . . , ϵZθ,t

]
. (4)

Finally, according to the reverse process of BBDM, we obtain the volume X̄t−1 ∈
RZ×H×W using the averaged prediction Eθ,t, Xt, and source volume Y .

Correction. However, x̄i
t−1, having moved a time step via the simple average

of ϵi,kθ,ts (i.e., the averaged score at xi
t), does not guarantee its placement on the

manifold of xi
t−1 (Fig. 3 left). To mitigate this transition error, inspired by the

Langevin MCMC-based corrector in [29], we propose a deterministic correction
method with M steps:

Xt,m = Xt,m−1 + λδt|t−1(
√
d/∥Sθ∥2)2Sθ, (5)

where Xt,0 = X̄t, Xt = Xt,M , the step size λ is a hyperparameter, d is the
dimensionality of xi

t, and Sθ = Sθ(Xt,m−1, cSKC , t) is the score function [29] at
Xt,m−1. We removed the random noise z of Langevin MCMC to ensure determin-
ism, and applied an adaptive weighting for the magnitude of Sθ and the variance.
Sθ can be derived similar to [14, 30] on a volume basis as follows (Supp. C):

Sθ(Xt, cSKC , t) = − 1

δt
{mt(Xt − Y ) + (1−mt)CP θ(Xt, cSKC , t)}. (6)
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Table 1. Quantitative comparison with baselines

CT→MRI (in-house) FLAIR→T1 (BraTS)

Methods NRMSE↓ PSNR↑ SSIM↑ NRMSE↓ PSNR↑ SSIM↑

3D RevGAN 0.0577 25.344 0.8925 0.0824 22.073 0.8370
ALDM (200 step) 0.0673 23.495 0.8474 0.0975 20.453 0.7921

2D
MaskGAN 0.0910 21.328 0.7421 0.1112 19.311 0.7222

Palette (1000 step) 0.0811 21.877 0.4365 0.1495 16.974 0.4276
Ours (100 step) 0.0515 26.666 0.9199 0.0808 22.579 0.8837

3 Experiments

Datasets. We evaluate our method and baselines on in-house CT-MRI (T1)
dataset and public FLAIR-T1 MRI dataset from BraTS2023 [4–6, 22]. CT and
MRI images from the in-house dataset were coregistered using SPM12 [1] and
skull-stripped with SynthStrip [16]. Both datasets were resampled to 1 mm
isotropic voxels, cropped for background removal, and min-max normalized to a
range of 0 to 1. Details of each dataset can be found in Supp. A.

Implementation Details. All 2D models used axial slices, and all DMs were
trained with 1000 diffusion steps. Our method employed 100 DDIM sampling
steps, and for ISTA sampling, we adjusted to 50 steps with M = 1 correction
for a fair comparison. For testing, the default style key of SKC is the averaged
histogram of the entire training dataset. More details can be found in Supp. A.

Baselines. For comparison, we reproduced 2D and 3D GANs and DMs baselines
for I2I, using default settings unless specified otherwise: (1) MaskGAN [26],
a cyclic GAN for unpaired 2D medical I2I, adapted for paired training; (2)
Palette [27], a conditional DM for 2D I2I; (3) RevGAN [24], a GAN with a
reversible 3D backbone, also adapted for paired training; (4) ALDM [19], a 3D
LDM framework, with model channels reduced to fit our GPU memory capacity.

3.1 Evaluations

Quantitative Results. We confirmed the effectiveness of our method against
baselines on the in-house CT-MRI and BraTS FLAIR-T1 datasets (Table 1).
For quantitative evaluation, normalized root mean square error (NRMSE), peak
signal-to-noise ratio (PSNR), and structural similarity index measure (SSIM)
were used. In examining baselines, we noted two points: DMs showed similar or
lower metrics than GANs due to the diversity from their inherent stochasticity,
and 3D models surpassed 2D models. Yet, our method, which is based on a 2D
DM with small sampling step, outperformed all GANs and 3D models (paired
t-test, P<0.05). This highlights the efficacy of (1) style uniformization through
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Table 2. Quantitative results of ablation studies.

CT→MRI (in-house) FLAIR→T1 (BraTS)

Methods NRMSE↓ PSNR↑ SSIM↑ NRMSE↓ PSNR↑ SSIM↑

Pure BBDM 0.0575 25.359 0.8912 0.2232 16.639 0.7917
+SKCcolin 0.0619 25.285 0.9004 0.0855 22.223 0.8806
+SKCavg 0.0517 26.443 0.9157 0.0820 22.409 0.8763
+ISTA 0.0525 26.551 0.9167 0.1787 17.652 0.8054
+SKCavg, ISTAcp-only 0.0515 26.664 0.9199 0.0809 22.578 0.8837
+SKCavg, ISTA (Oursavg) 0.0515 26.666 0.9199 0.0808 22.579 0.8837
+SKCbest, ISTA (Oursbest) 0.0454 27.589 0.9252 0.0625 24.644 0.8938

SKC, (2) shape and style consistency via ISTA, and (3) Brownian bridge-based
stable mapping.

Qualitative Results. Our method generated high-quality MRI volumes that
are very similar to the target MRI, outperforming baselines (Fig. 4 & Supp. B).
Compared to 3D models, 2D baseline models showed severe slice inconsistency
in sagittal views. However, our 2D-based method excelled in slice consistency
and surpassed 3D models in anatomical clarity across all views. Furthermore,
our method can produce volumes that reflect various desired styles (Supp. E).

Ablation Studies. We conducted experiments on various options for SKC and
ISTA (Table 2 & Supp. D). Firstly, we set three options for SKC: the default
averaged histogram (SKCavg), the histogram of the public Colin 27 Average Brain
[15] (SKCcolin), and the histogram similar to the target ground truth from the
training data (SKCbest). The performance of SKCavg over pure BBDM and the
elimination of style inconsistency indicate that SKC enables slice generation with
uniform style. The performance of SKCcolin may vary depending on the similarity
between Colin’s style and the test data, but it outperformed the pure BBDM and
produced volumes with the desired styles (Supp. E). The marked improvement
with Oursbest highlights our method’s potential to accurately produce volumes
close to the ground truth when provided with an exact style key for the target.
Secondly, two options were set for ISTA: with correction (ISTA, 50 step, M = 1)
and co-prediction only (ISTAcp-only, 100 step, M = 0). ISTA, ISTAcp-only, and
without ISTA showed superior performance in that order, proving the effect of
both local slice consistency via co-prediction and error reduction via correction.
Ultimately, optimal performance was achieved with both SKC and ISTA.

4 Conclusion and Discussion

We have successfully achieved slice-consistent and high-quality 3D volumetric
brain CT-to-MRI translation with 2D BBDM, enhancing medical reliability
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through fully deterministic generation. Our proposed methods, SKC and ISTA,
tackle the slice inconsistency issue from different perspectives and hold broad
applicability in medical volume synthesis tasks. These fundamental approaches
have significant potential for future expansion. SKC, which allows for control
of the target imaging style based on the histogram, can be particularly utilized
in addressing domain gap issues in medical imaging fields, such as multi-site
MRI harmonization. Concurrently, ISTA can serve as a foundational method
that enables iterative generative models, such as diffusion models, to establish
connectivity in a higher-dimensional space than the input dimension.
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