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Abstract. Conventional medical image registration approaches directly
optimize over the parameters of a transformation model. These approaches
have been highly successful and are used generically for registrations of
different anatomical regions. Recent deep registration networks are in-
credibly fast and accurate but are only trained for specific tasks. Hence,
they are no longer generic registration approaches. We therefore propose
uniGradICON, a first step toward a foundation model for registration
providing 1) great performance across multiple datasets which is not
feasible for current learning-based registration methods, 2) zero-shot ca-
pabilities for new registration tasks suitable for different acquisitions,
anatomical regions, and modalities compared to the training dataset,
and 3) a strong initialization for finetuning on out-of-distribution reg-
istration tasks. UniGradICON unifies the speed and accuracy benefits of
learning-based registration algorithms with the generic applicability of
conventional non-deep-learning approaches. We extensively trained and
evaluated uniGradICON on twelve different public datasets. Our code and
weight are available at https://github.com/uncbiag/uniGradICON.
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1 Introduction

Conventional registration methods [2,19,22,13] directly estimate spatial corre-
spondences for an image pair. They can be used for a wide variety of registration
tasks, can be highly accurate, but are often slow as they estimate registration
parameters from scratch for every registration pair by numerical optimization.
More recent supervised [36,4,30] and unsupervised [10,3] learning-based regis-
tration approaches predict spatial correspondences much faster using a deep
registration network. These learning-based approaches have achieved significant
accuracy improvements by advanced transformation models [29,27,27], network
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Fig. 1. Example uniGradICON registrations. Prediction only w/o IO.

structures [23,6], training schemes [14,9,24], and similarity measures [33,25].
Learning-based methods now outperform conventional methods on various reg-
istration tasks in terms of accuracy and speed. However, current learning-based
methods require training task-specific networks making them much less flexible
than approaches that use numerical optimization per image pair.

Our key question is: Can we train a universal registration network that can
be used as generically as conventional registration algorithms while retaining the
speed and accuracy advantages of learning-based, but task-specific, methods?
One can imagine obtaining such a model by training one registration network
over many different datasets to obtain a universal foundation model for regis-
tration. However, this is not straightforward. The crux is that picking the right
kind of registration hyperparameters (for regularizer and similarity measure) is
important for good registration performance for conventional and learning-based
registration alike. However, while this tuning for conventional approaches might
be tedious, learning-based approaches generally require the costly training of a
new network instance. While some work to adapt hyperparameters after training
exists for deep registration networks [16], the fundamental issue is that differ-
ent registration tasks generally require different hyperparameters. However, a
universal registration network will be trained using only one fixed set of hyper-
parameters, which then would be suboptimal for some registration tasks.

Recent work [12,32] on learning-based registration allows training task-specific
registration networks using exactly the same training procedure and hyperpa-
rameters. This is made possible [32] by replacing conventional regularizers (e.g.,
diffusion) by gradient inverse consistency (GradICON) regularization. While con-
ventional regularizers need to be carefully balanced with an image similarity
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measure the GradICON regularizer is weaker as it only encourages invertibility
of the transform. This weaker regularity allows the network to discover what
transformations are supported by the data and thereby facilitates training with
the same hyperparameters across different datasets. Hence, a key question we
explore is if GradICON regularization can also be used to train a universal foun-
dation model for registration.
Contributions. 1) We develop (to the best of our knowledge) the first founda-
tion model for registration; 2) we show that our uniGradICON model can achieve
excellent registration accuracy across multiple datasets; 3) we demonstrate that
uniGradICON can be successfully used to register images from different image
sources, anatomical regions, and image modalities.

2 Material & method

2.1 Dataset curation and pre-processing

Dataset. We created a composite training dataset from publicly available med-
ical image corpora. This composite dataset contains various anatomical regions
(e.g., lung, knee, brain, and abdomen), different modalities (e.g., CT, CBCT,
and MRI), and various deformation patterns (e.g., lung inspiration/expiration
or inter-subject anatomical mappings). See Tab. 6 in the appendix for details.
Intensity pre-processing. For CT images, we clip the Hounsfield Units (HU)
to [−1000, 1000] and then linearly normalize to [0, 1]. For MRIs, we clip the
maximum intensity at the 99th percentile and then similarily standardize to
[0, 1]. This pre-processing is the same across the training and test phases.
Spacing pre-processing. We resize all images to [175, 175, 175] using trilinear
interpolation. Thus, image spacing of the network input images may not be
isotropic. We always evaluate on the original images by linearly interpolating
the output transformation fields back to the original spacing.

2.2 Registration network

We rely on the publicly-available GradICON registration network [32] which uses
a two-step registration process: 1) images are run through a three-level multi-
resolution registration network where, at each level, a UNet accepts the warped
image from the previous level and the target image. In addition, the input images
are downsampled to 1

4 ,
1
2 , 1 for each level, respectively; 2) images are run through

one UNet that accepts the warped image from the first step and the target image
at full resolution. All four UNets have the same architecture.

2.3 Training protocol and experimental setting

Training dataset. Our composite dataset (Tab. 6 in the appendix) for train-
ing contains intra- and inter-patient data. The intra-patient dataset (dataset 1)
contains 899 pairs of inspiration/expiration lung CT images. The inter-patient
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datasets (dataset 2-4) contain 2532, 1076, and 30 images. We randomly sample
two images within each dataset, leading to 3,205,512, 578,888, and 450 possi-
ble distinct pairs, respectively. To prevent bias due to the differing numbers of
paired images for the different datasets, we randomly sample 1000 image pairs
from each dataset during each epoch, resulting in 4000 3D image pairs per epoch.
Training loss. The loss proposed in GradICON [32] has the following formulation:

L = Lsim
(
IA ◦ ΦAB , IB

)
+Lsim

(
IB ◦ ΦBA, IA

)
+λ∥∇

(
ΦAB ◦ ΦBA

)
−I∥2F . (1)

Given an ordered image pair (IA, IB), the registration network outputs the trans-
formation map ΦAB which maps IA to the space of IB . By swapping the input
pair (IB , IA), we obtain the estimated inverse map ΦBA. The similarity loss
Lsim is computed between the warped image IA ◦ ΦAB and the target image
IB , and vice versa. We use localized normalized cross correlation (1−LNCC) as
similarity measure. The third term in Eq. (1) is the gradient inverse consistency
regularizer, which penalizes differences between the Jacobian of the composition
of ΦAB with ΦBA and the identity matrix I; ∥·∥2F is the Frobenius norm, λ > 0.

We use GradICON as the basic building block of our approach because it pro-
vides excellent registration performance for a variety of datasets using exactly
the same hyperparameter and training settings [32]. We expect this behavior to
allow training a better registration model across our composite dataset com-
pared to using competing approaches that rely on task-specific training and
hyperparameter settings. Sec. 3 empirically supports this hypothesis.
Training hyperparameters. We train the first step for 800 epochs and the
second for 200 epochs with a learning rate of 5e-5 and a balancing constant of
λ = 1.5. These are the default settings for GradICON7.
Model availability and development plan. We will periodically update our
model8 to include more anatomical regions, modalities, and deformation types.

3 Experiments

UniGradICON’s contributions are as follows. First, it obtains state-of-the-art
(SOTA) or close-to SOTA accuracy without retraining, resulting in similar gen-
erality as conventional registration approaches. Hence, our model bridges the
gap between the versatility of conventional optimization-based registration algo-
rithms (e.g., ANTs [2], Elastix [19], or NifyReg [22], which while largely moti-
vated by brain registration are general purpose registration tools) and the speed
and accuracy of task-specific deep registration networks. Second, it can pro-
vide a satisfying baseline for zero-shot out-of-distribution registrations. Third,
when combined with finetuning on an out-of-distribution dataset, it can provide
on-par performance to task-specific registration networks for that dataset. To
7 Better performance might be achievable by further hyperparameter tuning. But this

is not the focus of the current study which is targeted at establishing if it is feasible
to train a deep registration network with good performance across multiple datasets.

8 https://github.com/uncbiag/uniGradICON
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COPDGene OAI HCP L2R-Abdomen

mTRE[mm] %|J |<0 DICE %|J |<0 DICE %|J |<0 DICE %|J |<0

Initial 23.36 7.6 53.4 25.9

VM-lung [3] 9.88 [32] 0.0 - - - - - -
GradICON-lung [32] 1.93 [32] 3e-4 38.0 7.9e-4 73.0 4.4e-5 18.1 3.4e-2
GradICON-lung(IO) [32] 1.31 [32] 2e-4 70.0 8.0e-3 79.3 1.9e-4 36.9 6.6e-1
LapIRN [24] 2.92 [32] 0.0 - - - - -
VM+Affine-knee [3] - - 66.1 [32] 1.3e-3 - - - -
VM-knee [3] - - 46.1 [32] 2.8e-3 - - - -
GradICON-knee [32] - - 70.1 [32] 2.61e-2 - - - -
GradICON-knee(IO) [32] - - 71.2 [32] 4.20e-3 - - - -
GradICON-brain [32] - - - - 78.7 [32] 1.2e-3 - -
GradICON-brain(IO) [32] - - - - 80.5 [32] 4e-4 - -

SyN [2] 1.79 [32] - 65.7 [32] 0 75.8 [32] 0 25.2 0
VoxelMorph-SVF [3] 19.21 0 55.0 1.1e-4 44.2 1.7e-2 33.8 7.2e-2
uniGradICON 2.26 9.3e-5 68.9 3.9e-2 76.2 6.4e-5 48.3 3.1e-1
uniGradICON(IO) 1.40 9.0e-5 70.3 2.2e-2 78.9 2.2e-4 52.2 9.6e-1

Table 1. Comparison between task-specific ( ) and universal ( ) models based on
VoxelMorph, LapIRN and uniGradICON. References indicate a published result.

evaluate uniGradICON w.r.t. these three aspects, we test on 1) in-distribution
test datasets (Sec. 3.1), 2) out-of-distribution datasets with zero-shot inference
(Sec. 3.2), and 3) by finetuning on an out-of-distribution dataset (Sec. 3.3).

3.1 Performance on in-distribution tasks

We evaluate uniGradICON on datasets 5-7 (Tab. 6) and the validation set of
dataset 4 for in-distribution performance. Tab. 1 shows that uniGradICON achieves
comparable performance to models trained specifically for a dataset. We fur-
ther observe that uniGradICON 1) generalizes much better across datsets than
a task-specific model (GradICON-lung), 2) consistently outperforms an excel-
lent conventional registration approach (SyN), and 3) performs significantly bet-
ter than a VoxelMorph-based foundation model (Tab. 7 in the appendix), also
trained on the composite dataset. These results verify our hypothesis that the
weaker GradICON regularizer of uniGradICON indeed allows successfully training
one universal registration model compared to the lower accuracy of a diffusion-
regularizer-based VoxelMorph variant. We did not succeed in training a LapIRN-
based [24] foundation model, likely due to the need for task-specific hyperpa-
rameter tuning. Also, we note that the universal VoxelMorph model may benefit
from affine pre-alignment which is not needed for uniGradICON. However, due
to the large number of training samples for a universal model, affine alignment
would have to rely on on-the-fly affine registration. This in turn would require
a universal affine registration network which does not yet exist.
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Anatom. region Deformation Acquisition Modality

In-distribution ✓ ✓ ✓ ✓

Out-distribution (Type 1) ✓ - ✗ ✓

Out-distribution (Type 2) ✗ ✗ - ✓

Out-distribution (Type 3) ✓ - - ✗

Table 2. Types of generalization. ✓and ✗ denote whether corresponding data have
been included in the composite training dataset. − denotes a data type that we do not
strictly test uniGradICON’s generalization capability on.

3.2 Performance on out-of-distribution tasks

We evaluate the zero-shot performance of uniGradICON on out-of-distribution
datasets. We classify out-of-distribution datasets into three categories: Type 1
comprises datasets that contain the same anatomical regions as the compos-
ite training dataset but originate from different sources (e.g., comparing HCP
to IXI); Type 2 are datasets with unseen anatomical regions not covered by
the composite dataset; Type 3 are datasets of modalities not contained in the
composite training dataset. Tab. 2 provides an overview of these different types.

L2R-NLST L2R-OASIS IXI
Validation Test Validation Test Test

mTRE[mm] %|J |<0 mTRE[mm] DICE %|J |<0 DICE DICE %|J |<0

Initial 10.22 11.2 57.18 56 40.6

Learn2Reg [15] Top-1 - - 1.44 - - 82 - -
Learn2Reg [15] Top-5 - - 2.04 - - 78 - -

VoxelMorph [3] - - - - - - 73.2 [6] 1.522
TransMorph [6] - - - - - - 75.4 [6] 1.579

SyN 3.04 9.8-1 - 75.6 1.5e-2 - 64.5 [6] <1e-4
uniGradICON 2.07 4.7e-4 - 79.0 8.9e-4 - 70.6 7.4e-3
uniGradICON(IO) 1.77 2.0e-2 - 79.6 1.9e-3 - 71.3 1.8e-1
Table 3. Evaluation of uniGradICON on Type 1 out-of-distribution tasks with zero-
shot inference and instance optimization (IO).

Different sources (Type 1). We test zero-shot inference of uniGradICON on
one lung dataset, L2R-NLST, and two brain datasets, L2R-OASIS and IXI. This
experiment studies how uniGradICON generalizes to images of a modality and
of anatomical regions contained in the composite dataset but acquired as part
of different studies. As we do not have access to the test set of the Learn2Reg
challenge, we use the validation set for testing. This is valid because we do not
train on the Learn2Reg dataset. As there are no existing foundation models for
registration, we compare to SyN. To provide context for how the current task-
specific models perform on these datasets, we included the results reported in
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COPDGene OAI HCP L2R-Abdomen
Validation Test

mTRE %|J |<0 DICE %|J |<0 DICE %|J |<0 DICE %|J |<0 DICE
Initial 23.36 7.6 53.4 25.9 28

Learn2Reg [15] Top-1 - - - - - - - - 69
Learn2Reg [15] Top-5 - - - - - - - - 49

SyN [2] 1.79 [32] - 65.7 [32] 0 75.8 [32] 0 25.2 0 -
uniGradICON 2.26 9.3e-5 68.9 3.9e-2 76.2 6.4e-5 48.3 3.1e-1 -
uniGradICON(wo Abdomen) 2.20 5.6e-6 68.9 8.9e-3 76.8 1.2e-5 34.1 1.9e-2 -
uniGradICON(wo Abdomen) (IO) 1.41 2.6e-5 70.2 1.2e-2 79.0 1.5e-4 45.3 7.9e-1 -

Table 4. Evaluation of uniGradICON on Type 2 out-of-distribution tasks with zero-
shot inference and instance optimization (IO).

the Learn2Reg official paper and website for the top 5 methods. Tab. 3 shows
that uniGradICON performs better than SyN across all three registration tasks
with zero-shot inference, with further improvements achievable by instance
optimization (IO). The uniGradICON results are within the performance range of
the top 5 Learn2Reg methods trained and tuned for the specific tasks. Note that
while these results are not directly comparable, we assume that the validation
and test sets from the same dataset share the same distribution and, hence,
share the same trends. We conclude that uniGradICON is a strong out-of-the-
box benchmark model for Type 1 out-of-distribution tasks.
Different regions (Type 2). We test the generalizability of uniGradICON to
registrations for unseen anatomical regions. We train uniGradICON excluding
L2R-Abdomen from the composite dataset and test on the L2R-Abdomen vali-
dation set. This is challenging as the images and deformation patterns are both
not seen during training. Tab. 4 shows that although uniGradICON(wo Abdomen)
increases the initial DICE score from 25.9% to 34.1%, we observe an accuracy
drop compared to uniGradICON which was trained on the full composite dataset.
However, uniGradICON(wo Abdomen) achieves a better registration result than
SyN. It also provides a good initialization for instance optimization, mitigating
most of the performance drop and coming close to the Top-5 Learn2Reg accu-
racy for a task-specific model. We conclude that uniGradICON can be a good
out-of-the-box baseline for Type 2 out-of-distribution tasks.
Different Modalities (Type 3). We test how uniGradICON generalizes when
the input images have different modalities from the composite training dataset.
We use the L2R-CBCT and the L2R-MRCT datasets for evaluation. The L2R-
CBCT dataset contains paired images of CT and CBCT where both the CBCT
and the combination of CT and CBCT are absent in the composite dataset.
For the L2R-CTMRI dataset, the input combination of CT and MRI is unseen
during training. Tab. 5 shows that although uniGradICON has not been trained
for multi-modal registration, its accuracy is within the range of the top 5 well-
tuned and task-specific methods on L2R-CBCT, highlighting its strong gener-
alization ability to unseen modalities and multi-modality registration problems.
Compared to the excellent performance on L2R-CBCT, uniGradICON is not as
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L2R-CBCT L2R-CTMR
Validation Test Validation Test

DICE %|J |<0 DICE DICE %|J |<0 DICE
Initial 31.3 28.0 31.3 33

Learn2Reg [15] Top-1 - - 63.2 - - 75
Learn2Reg [15] Top-5 - - 56.9 - - 71

SyN [2] 57.4 0 - 45.0 0 -
uniGradICON 57.0 4.7e-4 - 50.0 4e-2 -
uniGradICON (IO) 59.9 0 - 66.8 6.1e-1 -

uniGradICON (finetune) 60.3 3.6e-1 - - - -
uniGradICON (finetune+IO) 63.7 8.9e-1 - - - -

Table 5. Evaluation of uniGradICON on Type 3 out-of-distribution tasks with zero-
shot inference, instance optimization (IO), and target task finetuning.

strong as the well-tuned and trained task-specific methods on L2R-CTMRI. We
hypothesize that the combination of CBCT and CT is visually closer to the CT
pairs in the composite dataset than the combination of MRI and CT. Thus, it
is more challenging for uniGradICON to generalize to the L2R-CBCT task. We
conclude that uniGradICON can be used as an out-of-the-box baseline method
for Type 3 out-of-distribution tasks.

3.3 Performance of finetuning on out-of-distribution dataset

We study the performance of uniGradICON when used as an initialization and
finetuned on a target registration task. We test on the Type 3 out-of-distribution
dataset L2R-CBCT. We finetune uniGradICON with the L2R-CBCT training
dataset (excluding the validation set) for 4,000 epochs with the learning rate and
hyper-parameters used initially. Tab. 5 shows that the finetuned uniGradICON
model is better than the best task-specific Learn2Reg model.

4 Conclusion, limitations, and future work

We have developed uniGradICON, a foundation registration model that performs
on par with task-specific SOTA methods for in-distribution registration tasks
(Tab. 1), alleviating the burden of training new registration networks for every
task. UniGradICON achieves comparable performance to well-trained SOTA task-
specific methods on datasets collected from different sources (Tab. 3) and that
contain out-of-distribution modalities (Tab. 5), demonstrating uniGradICON’s
good out-of-the-box baseline registration performance. We also showed that fine-
tuning uniGradICON on an unseen target dataset can further improve accuracy.
Limitations and future work. First, more training datasets could be included
for the training of uniGradICON. Although uniGradICON shows multi-modal gen-
eralization abilities (cf. Tab. 5), its support for multi-modal registration could be
improved by training on multi-modal image datasets, or by using 1−LNCC2 or
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normalized mutual information as the similarity measure. A self-supervised rep-
resentation may also help improve the current limited zero-shot performance for
unseen regions (cf. Tab. 4). UniGradICON only uses images: further improvements
might also be possible by including segmentations for training and instance opti-
mization. Finally, we remark that uniGradICON uses the GradICON deep network;
using a larger network most likely improves performance.
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