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Abstract. This study introduces a novel On-the-Fly Guidance (OFG)
training framework for enhancing existing learning-based image registra-
tion models, addressing the limitations of weakly-supervised and un-
supervised methods. Weakly-supervised methods struggle due to the
scarcity of labeled data, and unsupervised methods directly depend on
image similarity metrics for accuracy. Our method proposes a supervised
fashion for training registration models, without the need for any labeled
data. OFG generates pseudo-ground truth during training by refining de-
formation predictions with a differentiable optimizer, enabling direct su-
pervised learning. OFG optimizes deformation predictions efficiently, im-
proving the performance of registration models without sacrificing infer-
ence speed. Our method is tested across several benchmark datasets and
leading models, it significantly enhanced performance, providing a plug-
and-play solution for training learning-based registration models. Code
available at: https://github.com/cilix-ai/on-the-fly-guidance

Keywords: image registration · on-the-fly guidance · pseudo label.

1 Introduction

Medical image registration is pivotal in medical image analysis, aiming to align
two medical images by optimizing their visual similarity through a deformation
field. There are two factions: traditional optimization-based methods like [3,4,21],
which iteratively refine the deformation field using mathematical constraints,
and modern learning-based methods [8,9], which predict deformation fields from
image pairs. Both approaches are vital, with the latter gaining significant traction
for its direct prediction capabilities, marking a swift evolution in the field.

Nevertheless, learning-based methods face a major hurdle: the trade-offs be-
tween weakly-supervised learning, which yields better results at the cost of ex-
tensive labeling, and unsupervised learning, which foregoes labels but directly
relies on less precise image similarities for deformation field derivation. This sit-
uation prompts the critical question: is it possible to create a training method
that bypasses the need for manual labels while still benefiting from the precision
of direct supervision?

https://github.com/cilix-ai/on-the-fly-guidance
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In this work, we present a novel training framework named on-the-fly guid-
ance (OFG) that merges supervised learning with existing learning-based im-
age registration methods to boost their performance. OFG uniquely generates
pseudo-ground truth on the fly through instance-specific optimization, using
these results for direct supervision. This hybrid approach combines direct pre-
diction with iterative refinement in a two-stage process: 1) the model predicts a
deformation field ϕpre, and 2) this field is optimized to produce ϕopt, which then
acts as a pseudo-label. The model’s training is guided by directly comparing
the initial and optimized deformation fields using MSE(ϕpre, ϕopt), ensuring a
direct and efficient learning process.

OFG introduces a crucial incremental supervision method that guides models
toward convergence by setting intermediate goals rather than a final objective.
It optimizes the current deformation prediction in a step-by-step manner, easing
the model’s learning process while balancing supervision quality with compu-
tational efficiency. This approach allows image registration models to undergo
a nuanced, self-improving training process. Compared to baseline unsupervised
and other pseudo-supervised methods like self-training, OFG shows consistent
and significant improvements, underscoring its effectiveness.

The main contributions of our work are summarized as follows:

– Introducing OFG, a training framework that enhances existing image regis-
tration models, utilizing supervised learning without relying on labeled data.

– Using optimized pseudo-ground truth for incremental learning targets, fos-
tering a self-enhancing cycle between the model and optimizer.

– Presenting through extensive benchmarks that our method surpasses base-
lines and previous state-of-the-art across different datasets and models.

2 Related Work

Weakly-Supervised & Unsupervised Training. Learning-based methods
have recently overtaken traditional optimization-based approaches [16,2,11,25,7]
in performance and efficiency [15,20,10,29], with supervised methods [27,23] de-
pending on ground-truth deformation fields often derived from traditional tech-
niques. The rise of unsupervised methods [5,26,22,28,9,8] optimize metrics like
NCC to understand the dataset globally. Popular unsupervised models like Vox-
elMorph [5], ViT-V-Net [9], and TransMorph [8] employ a U-Net structure with
CNN or ViT elements for deformation prediction and can use segmentation la-
bels for enhanced accuracy, though with the high cost of annotations.

Self-training. Closely related to our research is Cyclical Self-training [6],
which adopts a teacher-student approach, alternating training stages and em-
ploying pseudo labels for guidance. Our approach differs significantly in the
following ways: 1) the optimizer in [6] employs a non-learnable approach to gen-
erate deformation from the fusion of two encoded image features, which is not
competitive compared with existing learning-based models, 2) OFG generates
pseudo labels incrementally for each training epoch, as opposed to updating
labels between training stages which may introduce challenging shifts for the
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Fig. 1. The overall structure of the proposed framework. It has two parts, the prediction
stage (a), and the optimization stage (b). The framework uses the idea of on-the-
fly guidance to integrate the optimizer into the training process. The optimizer will
iteratively refine the deformation field predicted by the registration model (for n steps),
and the derived optimized deformation field will then be used as pseudo ground truth
to train the registration model.

model, and 3) OFG offers an end-to-end, plug-and-play framework applicable
across different models and datasets, contrasting with the custom, less general-
izable approach of Cyclical Self-training.

3 Method

3.1 Overall Structure

In this work, we present a two-stage training framework with the proposed on-
the-fly guidance (OFG), using pseudo-ground truth, it embeds optimization and
supervised learning in the training of registration models. 1 presents the overall
structure of the proposed two-stage training framework.

Prediction Stage. This stage consists of a learning-based registration model.
The registration model takes a fixed image If and a moving image Im and pre-
dicts a dense deformation field ϕ for each image pair If and Im, i.e.,

Fθ(If , Im) = ϕ (1)

where θ denotes the parameters of the registration network. Since OFG is a
training framework, the prediction stage can utilize any existing learning-based
registration model that predicts a deformation field. In our experiments, we used
several popular models, such as VoxelMorph [5] in the prediction stage.

Optimization Stage. The optimization stage utilizes the proposed opti-
mizer to iteratively refine the deformation field ϕpre predicted from the current
training step by n steps (10 in our default setting). Subsequently, the optimized
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deformation field ϕopt is used as the pseudo label to provide supervision for
the current predicted deformation during the training, forming a feedback loop
between the prediction model and the optimizer module.

3.2 On-the-Fly Guidance Training

Rather than relying on a fixed pseudo label derived from either a pre-trained
model’s prediction or the final optimized deformation, our approach introduces
on-the-fly guidance. This dynamic supervision evolves alongside the training
process to control discrepancies between pseudo labels and current predictions.
This approach offers two advantages: 1) the limited number (typically 5 to 10)
of optimizations incurs acceptable training overhead, 2) the optimized deforma-
tion serves as an attainable goal for the ongoing training step, providing more
direct guidance for the model. In essence, OFG delivers incremental supervision,
offering step-by-step guidance for the model.

The underlying assumption behind OFG is that the model and the optimizer
can form a self-improving relationship. The model can provide a reasonable
prediction, and in turn, the optimizer can refine that prediction. This is validated
in our experiments, as the optimizer can provide a good pseudo label even with
random input parameters.

3.3 Differentiable Deformation Optimizer

Our on-the-fly guidance hinges on an effective optimizer, we explored three op-
timization strategies: network-based, downsampled, and our proposed optimizer
(see 1 (b)) with instance optimization and high flexibility for parameter updates,
the latter showing the best results (see 5). Detailed comparison in Sec. 4.3.

The proposed differentiable optimizer is simple yet powerful, taking in the
deformation field generated by the prediction model as its initial parameters
and optimizing it to generate the pseudo label. It features a Spatial Transformer
Network (STN) [13] without extra parameters, focusing updates solely on the
deformation field. During an optimization iteration, the current deformation
field is applied to the moving image with the STN, yielding a warped image. An
energy function will evaluate the discrepancy between the warped and the fixed
image, and the distortion of the deformation field. This loss is backpropagated
using Adam [14] or SGD, this essentially refines the deformation field, i.e.,

ϕ
(n+1)
opt = ϕ

(n)
opt − η∇Eopt (2)

where n denotes the iteration step, η is the learning rate, and ∇Eopt represents
the gradient of the optimization energy function, implementation detailed in 4.
Notably, the optimizer’s role is limited to training, not inference, maintaining
training efficiency.
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3.4 Implementation Detail

Training Loss Function. The model’s training utilizes a loss function that
enforces supervision from pseudo labels. The model learns by minimizing the
discrepancy between the predicted deformation field ϕpre, and the optimized
deformation field ϕopt, which is quantified using MSE. Implemented is as follows:

Lofg =
1

n

∑
(ϕpre − ϕopt)

2 (3)

where Lofg is the model’s training loss, it is essentially a MSE-based supervision.
Optionally, a weight decay of 0.02 can be added to reduce overfitting for small
datasets, as suggested in VoxelMorph [5].

Optimizer Energy Function. The energy function to be minimized in the
differentiable optimizer consists of two terms: an image similarity loss term that
captures the difference between the warped image Im ◦ϕ and fixed image If and
a L2 regularization loss that imposes smoothness in ϕ:

Eopt(Im, If , ϕ) = NCC(If , Im ◦ ϕ) +
∑
p∈Ω

||∇ϕ(p)||2 (4)

where ◦ is the transform operation which warps Im using ϕ. The similarity metric
we used is the normalized cross-correlation (NCC), Îf (p) and Îm(p) represent
the mean voxel value within a local window of size n3 centered at voxel p:

NCC(If , Im ◦ ϕ) =
∑
p∈Ω

(
∑

pi
(f(pi) − f̂(p))([Im ◦ ϕ](pi) − [Îm ◦ ϕ](p)))2

(
∑

pi
(f(pi) − f̂(p))2)(

∑
pi

([Im ◦ ϕ](pi) − [f̂m ◦ ϕ](p))2)
(5)

4 Experiments

4.1 Experiment Conditions

Dataset and Preprocessing. We utilize three public Brain MRI datasets in
our study: IXI [17], OASIS [18], and LPBA40 [24], with standard preprocessing
steps including skull stripping, resampling, and affine transformation. For IXI,
we use 200 volumes for training and 20 for validation; for OASIS, 200 for training
and 19 for validation; and for LPBA40, 30 for training, 9 for validation. We also
utilize the Abdomen CT-CT dataset [12] to evaluate the generalizability of our
method on CT registration. 30 for training, and 20 for validation.

Evaluation Metrics. Our evaluation uses two primary metrics: the Dice
score (DSC) [5,4] for assessing volume overlap in anatomical segmentations,
indicating registration accuracy, and the Jacobian matrix to measure deforma-
tion field smoothness. The latter involves counting non-background voxels where
%|Jϕ| < 0, highlighting non-diffeomorphic deformation areas [1].

Baseline Methods. We validated our method based on various popular
registration methods. This comparison included two traditional methods, SyN
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Table 1. Evaluation results for different methods on various datasets. The OFG archi-
tecture provides significant and substantial improvement on the unsupervised learning-
based methods. These results validate OFG’s effectiveness and generalizability.

Datasets Methods Base. DSC ↑ OFG DSC ↑ Base. %|Jϕ| < 0 ↓ OFG %|Jϕ| < 0 ↓

IXI [17]

SyN [3] 0.647 N/A 1.96e-6 N/A
NiftyReg [19] 0.585 N/A 0.029 N/A

VoxelMorph [5] 0.714 0.737(+2.3%) 1.398 0.516(-63.1%)
ViT-V-Net [9] 0.716 0.738(+2.2%) 1.543 0.545 (-64.7%)
TransMorph [8] 0.744 0.760(+1.6%) 1.433 0.794 (-44.6%)

OASIS [18]

SyN [3] 0.769 N/A 1.58e-4 N/A
NiftyReg [19] 0.762 N/A 0.011 N/A

VoxelMorph [5] 0.788 0.794(+0.6%) 0.911 0.490 (-46.2%)
ViT-V-Net [9] 0.794 0.809(+1.5%) 0.887 0.487 (-45.1%)
TransMorph [8] 0.818 0.818(=) 0.765 0.517 (-32.4%)

LPBA40 [24]

SyN [3] 0.703 N/A 1.18e-4 N/A
NiftyReg [19] 0.691 N/A 1.13e-3 N/A

VoxelMorph [5] 0.658 0.666(+0.8%) 0.288 0.023 (-92.0%)
ViT-V-Net [9] 0.663 0.672(+0.9%) 0.390 0.112 (-71.3%)
TransMorph [8] 0.678 0.684(+0.6%) 0.438 0.150 (-65.8%)

Fig. 2. Visualization of registration results on LPBA40 [24]. Demo randomly extracted
from the comparison results between baseline TransMorph, VoxelMorph (row 2) and
their respective model trained with OFG (row 1). OFG shows improved smoothness.

[3] and NiftyReg [19] and multiple learning-based methods, VoxelMorph [5],
ViT-V-Net [9], TransMorph [8]. All methods are in their default configuration.

Experiment Settings. All models were trained on RTX 4090 for 500 epochs
using Adam [14], with an initial learning rate of 1e-4, batch size of 1, weight decay
of 0.02. For the differentiable optimizer, we used an initial learning rate of 0.1,
coupled with a default optimization step count of 10 during training.

4.2 Image Registration Results

We conducted extensive experiments on the three datasets with three baseline
models to showcase the effectiveness and robustness of our proposed framework.
Also comparing with the baseline of non-learning methods, see 1.

OFG on Brain MRI. We have evaluated OFG on brain MRI registration
extensively using 3 popular baseline models and datasets. Our method provides a



On-the-Fly Guidance Training for Medical Image Registration 7

Table 2. Abdomen CT registration. VoxelMorph
uses 3-step MSE optimizer, TransMorph uses 5-step
NCC optimizer.

Methods DSC Jacob. OFG DSC OFG Jacob.
VoxelMorph 0.312 0.165 0.319(+0.7%) 0.120(-27.3%)
TransMorph 0.317 0.165 0.382(+6.5%) 0.010(-93.9%)

Table 3. Cyclical Self-training vs.
OFG on LPBA40. OFG performs
significantly better.

Methods DSC Jacob.
VoxelMorph w. CST 0.628 0.047
VoxelMorph w. OFG 0.666 0.023

Fig. 3. Visualization comparing training progress and validation DSC on LPBA40
across models. Self-training uses pre-trained network deformation fields as pseudo la-
bels; optimized self-training enhances this with extra optimization steps. Our method
achieves the best outcome, with self-training lagging due to convergence complexities.

consistent and significant margin on DSC across different models and datasets,
demonstrating its effectiveness and generalizability. On the IXI dataset, OFG
improved DSC by +1.6% over TransMorph. For VoxelMorph and ViT-V-Net,
it increased DSC by +2.3% and +2.2%, respectively, highlighting its general
applicability. While on the smaller LPBA40 dataset, OFG’s added supervision
proved essential in preventing overfitting, underlining the importance of chal-
lenging supervision in sparse-data scenarios. Conversely, on the OASIS dataset,
OFG showed little improvement on TransMorph, likely due to the dataset’s
lesser challenge to the model, a hypothesis supported by the lowest training loss
of TransMorph on OASIS over all tested cases, suggesting a reduced learning
potential for this case. Importantly, for all test cases, our method significantly
reduced the percentage of non-diffeomorphic voxels, preventing overly sharp de-
formations and improving the quality of the registration.

OFG on Abdomen CT. We briefly tested OFG on the Abdomen CT-CT
dataset (see 2), with varying optimization configurations. For VoxelMorph, we
used MSE as the optimizer energy function, with 3 optimization steps, resulting
in a small improvement over baseline. For TransMorph, we used the default
energy function, with 5 optimization steps, yielding a much greater improvement
over baseline. OFG’s effectiveness on another modality showcases its robustness.

OFG vs. Self-training. We compared our result with various forms of
self-training including Cyclical Self-training (CST). Our method consistently
outperforms self-training methods on LPBA40, see 3. We also applied CST and
OFG on VoxelMorph, and tested on LPBA40, our method provides +3.8% better
DSC while halving the Jacobian, see 3. This is largely due to the OFG training
strategy explained in 3.2.
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Fig. 4. Ablation results on blending OFG with baseline unsupervised learning. From
left to right, we evaluated optimization frequency, loss blending, and probabilistic op-
timization, generally showing a decrease in performance when the intensity of OFG is
decreased, proving its effectiveness.

Table 4. Ablation results of the OFG Op-
timizer on LPBA40. This evaluation focuses
on the initial 30 epochs.

Designs DSC Opt. Time VRAM
None 0.635 N/A 12.07 GB
Network-based 0.642 13.604 14.35 GB
DownSample 0.610 0.097 12.44 GB
Ours 0.654 3.228 13.07 GB

Table 5. Comparison between our op-
timizer and network-based optimizer on
IXI. Results for first 200 epochs.

Designs DSC %|Jϕ| < 0 Opt. Time
VoxelMorph-1 0.691 0.456 1.174
VoxelMorph-2 0.690 0.383 2.314
VoxelMorph-5 0.693 0.385 5.856
Ours 0.731 0.503 3.018

4.3 Ablation Study

OFG Intensity Ablation. To show OFG’s deciding factors and how they influ-
ence performance, we blended OFG with baseline unsupervised loss in 3 different
forms: 1) Optimization frequency: only use optimizer every n epochs, i.e., de-
creased optimization frequency. 2) Loss weight composition: adding NCC loss
into the loss function, i.e., L = αLofg + βLNCC . 3) Probabilistic optimization:
only randomly optimizes a portion of the image instances during training. As
shown in Fig 4, we observed a decrease in performance when the intensity of
OFG decreases, in all three forms. Notably, a low optimization frequency resem-
bles the training strategy used in Cyclical Self-training. This result suggests a
higher optimization frequency (intensity) provides improved performance.

Optimizer Design. We also evaluated 2 other optimizer designs for our
framework, including: 1) Network-based optimizer: using a network capable of
fitting a general transformation to optimize deformation fields, in our case, we
used n cascaded VoxelMorph. 2) Downsampled optimizer: to improve the com-
putational overhead, a downsampled optimizer reduces all dimensions in half,
with only 1/8 of the updatable parameters. Table 4 and 5 show the proposed
design achieves the best performance.

Optimization Steps. We assessed the impact of optimization steps ranging
from 1 to 15 on training outcomes to balance computational efficiency with
optimization quality. Findings indicate that 5 to 10 steps offer optimal balance,
enhancing optimization quality without significantly lengthening training time
(only with a 10 to 18% increase), with no notable benefits from exceeding this
range. See Fig. 1. in supplementary material for detailed results.
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Self-improving Relationship. OFG is based on the concept that the model
and optimizer can enhance each other, with the optimizer’s robustness being key
to generating high-quality pseudo labels in various scenarios. Our findings in-
dicate that the optimizer can effectively refine initial deformations, even those
generated randomly or from models with random initialization, leading to signif-
icant improvements. See Fig. 2. in supplementary material for detailed results.

5 Conclusion

This work introduces On-the-Fly Guidance, a training framework that suc-
cessfully applies supervised-style training to learning-based registration models.
Demonstrating significant improvements on benchmark datasets, especially with
deformation smoothness, OFG has proven its effectiveness and generalizability.
OFG only comes with limited training overhead and no inference overhead. The
flexibility of our method allows future work to focus on aspects such as improv-
ing the efficiency of the optimizer, using dynamic optimization steps, altering
the optimizer design, and so on.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.
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