
SegNeuron: 3D Neuron Instance Segmentation in
Any EM Volume with a Generalist Model

Yanchao Zhang1,2, Jinyue Guo1,3, Hao Zhai1,2, Jing Liu1, and Hua Han1,2(�)

1 Laboratory of Brain Atlas and Brain-inspired Intelligence, Key Laboratory of Brain
Cognition and Brain-inspired Intelligence Technology, Institute of Automation,

Chinese Academy of Sciences, Beijing, China
{hua.han}@ia.ac.cn

2 School of Future Technology, University of Chinese Academy of Sciences,
Beijing, China

3 School of Artificial Intellengace, University of Chinese Academy of Sciences,
Beijing, China

Abstract. Building a generalist model for neuron instance segmentation
from electron microscopy (EM) volumes holds great potential to acceler-
ate data processing and analysis in connectomics. However, the diversity
in visual appearances and voxel resolutions present obstacles to model
development. Meanwhile, prompt-based foundation models for segmenta-
tion struggle to achieve satisfactory performance due to the inherent com-
plexity and volumetric continuity of neuronal structures. To address this,
this paper introduces SegNeuron, a generalist model for dense neuron
instance segmentation with strong zero-shot generalizability. To this end,
we first construct a multi-resolution, multi-modality, and multi-species
volume EM database, named EMNeuron, consisting of over 22 billion
voxels, with over 3 billion densely labeled. On this basis, we devise a
novel workflow to build the model with customized strategies, includ-
ing pretraining via multi-scale Gaussian mask reconstruction, domain-
mixing finetuning, and foreground-restricted instance segmentation. Ex-
perimental results on unseen datasets indicate that SegNeuron not only
significantly surpasses existing generalist models, but also achieves com-
petitive or even superior results with specialist models. Datasets, codes,
and models are available at https://github.com/yanchaoz/SegNeuron.

Keywords: Connectomics · Neuron Segmentation · Volume Electron
Microscopy · Deep Learning · Generalist Model

1 Introduction

Efficient and accurate neuron segmentation from electron microscopy (EM) vol-
umes has become a bottleneck that hinders progress in connectomic analysis
[1,27]. Consequently, automatic neuron segmentation methods based on deep
neural networks have emerged as a solution, effectively trading computational
resources for expert reconstruction time. As shown in Fig. 1(a), existing methods
can be categorized as boundary- and object-based. Specifically, boundary-based
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Fig. 1. Widely adopted pipelines and key challenges in generalist model development.

approaches [21,20,28] train models to predict descriptors for neuron boundaries
(e.g., affinity maps) and then employ graph-based agglomeration for instance
segmentation [4,11]. In contrast, object-based approaches execute single-neuron
filling by extending the trace area from the seed points iteratively [16,26]. While
effective, these methods suffer from poor model generalization, which requires
repetitive annotation, training, inference, and proofreading for new datasets.

Such cumbersome workflow could be streamlined and expedited with a gen-
eralist model that robustly determines the instance-level belonging of each voxel
in any EM volume. Nonetheless, the diverse visual appearances and voxel resolu-
tions present in EM data, as illustrated in Fig. 1(b), due to variations in species,
tissues, sample preparation protocols, and imaging techniques [25,15,27,36], pose
challenges in model development. Recently, visual foundation models via prompt
engineering have garnered significant attention for segmentation tasks of natural
and biomedical images [18,2,22]. While they seem to seamlessly integrate into
instance-based pipelines, the complexity of neural structures and the homoge-
nization of EM images bring difficulties in identifying neuron instances. More
importantly, those 2D models fail to tackle the extensive neuron splitting and
merging in 3D space. Fortunately, neuronal membranes exhibit consistent char-
acteristics across datasets, making it possible to develop a generalist model to
predict boundary descriptors (i.e., affinity maps) for 3D neuron reconstruction.

In this paper, we introduce SegNeuron, a boundary-based neuron segmenta-
tion model, generalized across diverse data distributions and spatial resolutions.
Such strong adaptability hinges on a large-scale database and customized train-
ing strategies (see Fig. 2). Specifically, we construct a heterogeneous and non-
reductant volumetric EM dataset, i.e., EMNeuron, containing over 22 billion
voxels in total. Combining publicly labeled datasets with crowdsourced annota-
tions, we get fine-grained instance-level annotations of over 3 billion voxels after
preprocessing. On this basis, we introduce a Gaussian noise addition-recovery
proxy task for model pretraining. This novel technique builds mask reconstruc-
tion without distribution distortion in a multi-scale manner, enabling robust
representation learning from unlabeled EM volumes. Moreover, the HOG feature
is employed as an additional target to enhance the extraction of high-frequency
features. The pretrained model is then finetuned on the labeled dataset to pre-
dict affinity maps. To prompt general feature extraction, we introduce frequency
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Fig. 2. A large-scale database and customized training strategies for SegNeuron.

and spatial domain mixing to generate training data with style-augmented ap-
pearances and mixed voxel resolutions. Finally, we restrict predicted affinities
via foreground masks to remove noisy values for graph-based segmentation.

Qualitative and quantitative results illustrate the superior performance and
strong generalizability of SegNeuron on both in- and out-of-distribution datasets.
All key components are proven effective through extensive ablation studies.

2 Method

In the paper, we aim to train a generalist model for neuron segmentation, capa-
ble of predicting voxel affinities along the x-, y-, and z-axes for any EM volume.
Here, we provide a formal definition of affinity maps. For a given EM image
I ∈ RD×H×W , the three-channel affinity map A ∈ {0, 1}3×D×H×W used to
characterize neuron boundaries is generated from dense instance annotations
G ∈ ND×H×W . Each affinity value indicates whether two adjacent voxels belong
to the same object along the x/y/z axis (1 for belonging and 0 for not). Further-
more, the foreground mask is denoted by F ∈ {0, 1}D×H×W , where 1 represents
the neuronal region and 0 represents the plasma membrane and myelin in G.

2.1 Database Construction

EMNeuron integrates 16 volume EM datasets (4 in-house, 12 publicly available),
covering diverse species, sample preparation protocols, imaging techniques, and
voxel resolutions. Detailed information is shown in Table 1 and Fig. 2(a). Dataset



4 Zhang et al.

Table 1. Details of EMNeuron. Underlined items represent in-house datasets.

Dataset Modality Res.(nm)
(x, y, z)

Total
voxels

Labeled
voxels Dataset ModalityRes.(nm)

(x, y, z)
Total
voxels

Labeled
voxels

1.ZFinch[19] SBF-SEM 9,9,20 3635M 131M 9.HBrain[25]FIB-SEM 8,8,8 3072M 844M
2.ZFish[23] SBF-SEM 9,9,20 1674M - 10.FIB25[29]FIB-SEM 8,8,8 312M 312M
3.vEM1 ATUM-SEM 8,8,50 1205M 157M 11.Minnie[7] ssTEM 8,8,40 2096M -
4.vEM2 ATUM-SEM 8,8,30 1329M 281M 12.Pinky[10] ssTEM 8,8,40 1165M 117M
5.vEM3 ATUM-SEM 8,8,40 1301M 253M 13.FAFB[36] ssTEM 8,8,40 2625M 577M
6.MitoEM[32] ATUM-SEM 8,8,30 1048M - 14.Basil[7] ssTEM 8,8,40 23M 23M
7.H01[27] ATUM-SEM 8,8,30 1166M 118M 15.Harris[12] others 6,6,50 30M 30M
8.Kasthuri[17]ATUM-SEM 6,6,30 1526M 478M 16.vEM4 others 8,8,20 45M 45M

1∼13 is used for model development, and 14∼16 for evaluation. Notably, the
overall size of most datasets reaches the petabyte level, making it impractical to
utilize all for training. Therefore, we first select representative and informative
unlabeled areas from each dataset and integrate them with the labeled parts to
construct our dataset. To avoid ambiguous feature learning caused by inconsis-
tent annotation styles, we conduct comprehensive data cleaning and transform-
ing, which includes adjusting tangential resolutions (x, y) to 6∼9 nm, unifying
membrane thickness, and masking out unlabeled myelin and glial regions.

2.2 Model Training

Pretraining via Multi-scale Gaussian Mask Reconstruction Mask recon-
struction is a well-established proxy task that learns general representations from
large-scale unlabeled data. The key is to design appropriate masking strategies
for EM data to eliminate information from the input. Transformer-based mod-
els make this easy by directly deleting selected patches or replacing them with
mask tokens [14,33]. However, given the diverse resolutions and highly differen-
tiated structures in EM datasets, operating in a single-scale manner with a fixed
patch size limits the network’s ability to capture boundary information at dif-
ferent levels. Another straightforward idea is to set masked pixels to zero/mean
value. Unfortunately, this process leads to global statistics distortion and severe
distribution changes between original and masked EM input.

To address these issues, we propose an architecture-agnostic masked image
modeling framework tailored for volumetric EM datasets: masking voxels with
random Gaussian noise in a multi-scale manner, as shown in Fig. 2(c).
Specifically, we first partition input data equally into 3D spatial patches. The
patch size is randomly generated based on input dimensions, prompting the
network to learn multi-scale representations from the EM database with a diverse
voxel resolution. Patches for masking are chosen randomly according to the
masking ratio, and their pixel values are replaced with random values drawn from
a Gaussian distribution N (µ, σ) that matches the grayscale distribution of the
original input. This strategy effectively alleviates global statistics distortion in
masked inputs and prompts better modeling of local low-frequency information.
The masked input is then fed into the network consisting of an encoder E and
two decoders D1, D2, as in Fig. 2(b). D1 is utilized to reconstruct the original
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input. For D2, we adopt the histogram of oriented gradients (HOG) [8] as an
additional prediction target, which proved to be effective in extracting high-
frequency features [31,6]. The overall loss function Lpre can be expressed as

Lpre = Lpre
Rec + λ1Lpre

Hog = LMSE(E(D1(Ĩ , I))) + λ1LMSE(E(D2(Ĩ , H))), (1)

where Ĩ represents the masked input, H is the calculated HOG feature, LMSE

denotes mean squared error loss, and λ1 is the weight coefficient.

Domain-mixing Finetuning As illustrated in Fig. 2(b), we first initialize the
encoder E in the segmentation network with pretrained weights. Subsequently,
the entire model is finetuned in a supervised manner on a high-quality, hetero-
geneous EM database with diverse visual appearances and voxel resolutions.

To encourage learning of generalized knowledge for neuron affinities and avoid
overfitting to dataset-specific biases, we introduce two customized mixing strate-
gies in the frequency and spatial domains respectively (Fig. 2(c)). In the fre-
quency domain, the amplitude spectrum represents low-level features such as
texture and appearance, while the phase spectrum captures higher-level content
such as shape and boundary. Hence, for each layer of the 3D input, we preserve
the phase spectrum and replace the low-frequency amplitude component with
that of the sampled auxiliary input, determined by frequency mixing ratio β1.
This operation preserves discriminative boundary information while significantly
enriching the style and texture of the training data [34]. In the spatial do-
main, we extend CutMix [35] to the neuron segmentation task, generating new
inputs with mixed semantic content based on spatial mixing ratio β2. Conse-
quently, we integrate data with diverse appearances and voxel resolutions into
a unified input, which forces the network to extract domain-invariant features
of affinity relationships. During training, we predict both neuron affinities and
foreground masks for those mixed inputs via two decoders of the segmentation
network, denoted as S1 and S2. The supervised loss function Lsup is given by

Lsup = Lsup
Aff + λ2Lsup

Fg = LCE(E(S1(Î , A))) + λ2LCE(E(S2(Î , F ))), (2)

where Î is the mixed input, LCE denotes the cross entropy loss, and λ2 denotes
the weight assigned to the foreground segmentation task.

Foreground-restricted Segmentation To mask noise values, we filter back-
ground voxels in each channel of the predicted affinity map a using the predicted
foreground mask f , as arc,d,h,w ≡ min(ac,d,h,w, fd,h,w). Such foreground-restricted
affinity map ar then serves as input for graph-based segmentation (Fig. 2(b)).

3 Experiments

3.1 Datasets and Evaluation Metrics

We employ the vEM4 (8, 8, 20 nm, in-house), Basil (8, 8, 40 nm, public) [7], and
Harris (6, 6, 50 nm, public) [12] datasets for out-of-distribution evaluation,
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Table 2. Qualitative results of different network architectures and pretraining schemes.

Methods vEM4 Basil Harris

Architectures Params/
FLOPs

Pretraining
schemes VI ↓ ARE ↓ VI ↓ ARE ↓ VI ↓ ARE ↓

UNETR[13] 115M/
334G

from scratch 1.1190 0.1490 1.8955 0.4489 3.0017 0.3209
SimSiam[5] 1.1059 0.1492 1.8446 0.4161 2.8935 0.2734
MAE[14] 1.0829 0.1391 1.8145 0.4130 2.9475 0.3032

Ours 1.0493 0.1369 1.8002 0.4182 2.8000 0.2877

SwinUNETR[30] 62M/
197G

from scratch 1.0944 0.1679 1.5552 0.3509 2.5673 0.2736
SimSiam[5] 1.0825 0.1624 1.5092 0.3562 2.5210 0.2367

Ours 1.0748 0.1628 1.4662 0.3131 2.4239 0.2252

PNI-Net[21] 33M/
317G

from scratch 0.9984 0.1480 0.9018 0.1782 0.9615 0.1319
SimSiam[5] 0.9804 0.1393 0.8878 0.1765 0.8316 0.1052

Ours 0.9674 0.1295 0.8479 0.1647 0.8314 0.0934

MNet[9] 40M/
471G

from scratch 0.9096 0.1211 0.8437 0.1543 1.0788 0.1244
Ours(SegNeuron) 0.8655 0.1022 0.7719 0.1531 1.0221 0.1170

which are unseen during model development and exhibit different appearances
and voxel resolutions. Additionally, we reserve a small portion of the labeled
database for in-distribution evaluation, including two annotated subvolumes
from FIB25 (8, 8, 8 nm, public) [29], a proofread subvolume from Kasthuri (6, 6,
30 nm, public) [17], and two proofread subvolumes cropped from the FAFB (8,
8, 40 nm, public) [36]. Two common voxel-level metrics are used to evaluate the
reconstruction performance: the variation of information (VI) [24] and adapted
Rand error (ARE) [3]. Lower values in both metrics indicate higher segmentation
quality, with the background being ignored during evaluation.

3.2 Implementation Details

We optimize all models using Adam with a learning rate of 1e-3, and a batch
size of 8 for 400,000 iterations on 4 NVIDIA RTX V100 GPUs. Skip connections
are disabled during pre-training. Instance results are obtained by solving the
multicut problem with the Kernighan-Lin solver [4]. The masking ratio ranges
between 0.5 and 0.7, and the mixing ratios β1 and β2 are 0.005 and 0.5. The
weighting coefficient λ1 in pretraining and λ2 in finetuning are set to 5 and
1. The following data augmentation is used in finetuning: reflection, rotation,
photometric perturbation, Gaussian noise/blur, Cutout, and anisotropic scaling.
Please refer to the supplementary material and released codes for more details.

3.3 Results

Network Architectures and Pretraining Schemes For architecture, we
consider the following alternatives in volumetric segmentation: UNETR [13],
a network that adopts Vision Transformer as encoder; SwinUNETR [30], a
segmentation model leveraging Swin Transformer as encoder; PNI-Net [21], a
CNN-based model widely used in neuron segmentation; and MNet [9], a CNN-
based network with mesh architecture. For pretraining schemes, we compare our
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Table 3. Quantitative comparison of the generalist models.

Methods vEM4 Basil Harris

VI ↓ ARE ↓ VI ↓ ARE ↓ VI ↓ ARE ↓

2D
SAM[18] 2.8579 0.8113 2.3677 0.7881 2.0374 0.5252

MicroSAM[2] 3.9972 0.9310 3.3483 0.8891 2.1904 0.5755
SegNeuron 0.4028 0.0839 0.6749 0.0922 0.5229 0.1063

3D
SAM[18] 5.5215 0.8985 4.6624 0.9482 5.1034 0.8538

MicroSAM[2] 5.7512 0.9640 4.8111 0.9655 4.4460 0.6566
SegNeuron 0.8655 0.1022 0.7719 0.1531 1.0221 0.1170

Raw (Basil) Grountruth SAM MicroSAM SegNeuron Raw (Harris) Grountruth SAM MicroSAM SegNeuron

Fig. 3. 2D (top) and 3D (bottom) visual comparison of the generalist models.

method with MAE [14] and SimSiam [5]. Quantitative results on three out-of-
distribution datasets provided in Table 2 support the following conclusions: (a)
The proposed pretraining method demonstrates effectiveness across various net-
work architectures and achieves consistent improvements over alternative strate-
gies. (b) Transformer-based UNETR struggles to model diverse voxel resolutions
and thus exhibits poor performance in affinities segmentation. SwinUNETR al-
leviates this problem through a heuristic structure, however it still lags behind
CNN-based models by a wide margin in performance. (c) Due to the significant
anisotropy present in the Harris dataset, PNI-Net with a 2.5D structure shows
superior adaptability; Benefiting from a mesh architecture, MNet achieves opti-
mal evaluation results on vEM4 and Basil datasets. In consideration of all factors,
we adopt MNet as the architecture for SegNeuron in subsequent experiments.

Comparison with Generalist Models We consider the following generalist
models for neuron reconstruction on out-of-distribution datasets: SAM [18], a
prompt-based foundation model for segmentation, and MicroSAM [2], a fine-
tuned version of SAM on EM data. Both methods first perform inference on
every layer with grid-point prompts and non-maximum suppression. Then, an
overlap-based connection algorithm is used to obtain the instance results in 3D
space. Quantitative results in Table 3 demonstrate that in neuron segmentation,
whether in 2D or 3D space, SegNeruon significantly outperforms existing gen-
eralist models, i.e., with an average gain of 400% on VI and 600% on ARE.
Moreover, visual comparisons are provided in Fig. 3. The segmentation results of
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(a) Comparison on in-distribution datasets (b) Comparison on out-of-distribution datasets

Fig. 4. Quantitative comparison with specialist models.

SegNeuron exhibit exceptional accuracy and spatial continuity. In contrast, SAM
tends to generate false positive predictions in organelles, and while MicroSAM
mitigates this after training on EM data, it also introduces more false negatives
and even causes a decrease in overall performance. In conclusion, the practi-
cal value of SAM and MicroSAM in zero-shot neuron segmentation is limited,
whereas SegNeuron effectively bridges this gap with strong generalizability.

Comparison with Specialist Models As shown in Fig. 4(a), SegNeuron
achieves competitive segmentation performance with the specialist models on in-
distribution datasets. This demonstrates that training a generalist model on het-
erogeneous datasets using the proposed strategies does not cause in-distribution
performance degradation. For out-of-distribution evaluations, quantitative re-
sults in Fig. 4(b) suggest that SegNeuron can effectively extract general features
of neuron boundaries on unseen distributions rather than overfitting the train-
ing data. Furthermore, we achieve further performance improvements and obtain
the best results on out-of-distribution datasets by finetuning SegNeruon under
the same settings. This indicates that SegNeuron can also serve as a powerful
foundational model, providing excellent pretraining for new datasets.

Table 4. Abaltaion study for the generalist model development.

Methods vEM4 Basil Harris

VI ↓ ARE ↓ VI ↓ ARE ↓ VI ↓ ARE ↓

Database - 0.9480 0.1241 0.9929 0.2288 1.2300 0.1298
w/ preprocessing 0.9338 0.1217 0.9625 0.1805 1.1036 0.1246

Pretraining

- 0.9338 0.1217 0.9625 0.1805 1.1036 0.1246
zero mask 0.9377 0.1173 0.8644 0.1854 1.0888 0.1107
mean mask 0.9191 0.1197 0.9199 0.1921 1.1024 0.1194

Gaussian mask 0.9241 0.1102 0.8213 0.1647 1.0600 0.1141
Gaussian mask w/o multi-scale 0.9119 0.1168 0.9029 0.1713 1.0940 0.1306
Gaussian mask w/o HOG loss 0.9341 0.1190 0.8446 0.1651 1.0882 0.1155

Finetuning

- 0.9241 0.1102 0.8213 0.1647 1.0600 0.1142
w/ frequency mixing 0.9031 0.1112 0.7821 0.1544 1.0563 0.1197
w/ spatial mixing 0.9058 0.1133 0.8208 0.1617 0.9935 0.1126

w/ spatial & frequency mixing 0.8655 0.1022 0.7719 0.1531 1.0221 0.1170

Segmentation - 0.8655 0.1022 0.7719 0.1531 1.0221 0.1170
w/o foreground restriction 0.8879 0.1056 0.8069 0.1620 1.0414 0.1182
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Ablations We validate the effectiveness of key components through ablation ex-
periments on unseen datasets. Results in Table 4 show that: (a) Our pretraining
strategy effectively leverages multi-scale perception and reduces statistics distor-
tion, making it well-suited for neuron segmentation. (b) The mixing strategies in
spatial and frequency domains encourage domain-invariant learning and enhance
model generalization. (c) Preprocessing and foreground-restricted segmentation
significantly improve performance without extra overhead.

4 Conclusion

This paper proposes SegNeuron, a neuron instance segmentation model trained
on large-scale heterogeneous EM datasets with strong zero-shot generalization
capabilities. We believe the released model can significantly simplify existing
workflows and accelerate the scientific analysis of connectomics.
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