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Abstract. Transformer-based methods have demonstrated impressive
results in medical image restoration, attributed to the multi-head self-
attention (MSA) mechanism in the spatial dimension. However, the ma-
jority of existing Transformers conduct attention within fixed and coarsely
partitioned regions (e.g. the entire image or fixed patches), resulting in
interference from irrelevant regions and fragmentation of continuous im-
age content. To overcome these challenges, we introduce a novel Region
Attention Transformer (RAT) that utilizes a region-based multi-head
self-attention mechanism (R-MSA). The R-MSA dynamically partitions
the input image into non-overlapping semantic regions using the robust
Segment Anything Model (SAM) and then performs self-attention within
these regions. This region partitioning is more flexible and interpretable,
ensuring that only pixels from similar semantic regions complement each
other, thereby eliminating interference from irrelevant regions. Moreover,
we introduce a focal region loss to guide our model to adaptively focus
on recovering high-difficulty regions. Extensive experiments demonstrate
the effectiveness of RAT in various medical image restoration tasks, in-
cluding PET image synthesis, CT image denoising, and pathological im-
age super-resolution. Code is available at https://github.com/RAT.

Keywords: Medical Image Restoration · Segment Anything Model ·
Region Attention · Focal Region Loss · Transformer.

1 Introduction

Medical image restoration (MedIR) aims to recover high-quality (HQ) images
from their low-quality (LQ) counterparts, encompassing a range of subtasks such
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as positron emission tomography (PET) image synthesis [1,2,3,4,5,6,7], com-
puted tomography (CT) image denoising [8,9,10,11,12], and pathological image
super-resolution [13]. It is a challenging problem due to its ill-posed nature,
where high-frequency details are missing in the input LQ images. With the ad-
vent of deep learning, researchers have explored the use of convolutional neural
networks (CNNs) [5,12,13] and Transformers [6,7,11,14] to develop innovative
deep networks for MedIR, significantly advancing this field.

Recently, Transformers have achieved state-of-the-art performance across
a number of MedIR tasks [6,7,11], attributed to the multi-head self-attention
(MSA) mechanism in the spatial dimension. This attention mechanism allows
the model to selectively focus on relevant regions within the image, thereby en-
hancing the MedIR performance [15]. Typically, Transformers conduct attention
either across the entire image [16] or by partitioning it into smaller patches
[17,14] for efficiency. Despite evidence of their effectiveness in research, there
are still two flaws in attention computation. (1) Whether computing attention
across the entire image or on patches, it involves roughly aggregating pixels for
attention operations. According to the papers [18,19,20], attention potentially
assigns high scores to irrelevant pixels, leading to the interaction between pixels
from non-similar regions and thereby causing undesirable interference. (2) Di-
viding the image into smaller patches may result in splitting continuous regions
into different patches, thereby disrupting the continuity of the image content
and impeding mutual complementarity between similar regions.

In order to address these issues, we propose a novel region-based multi-head
self-attention (R-MSA) method that dynamically partitions the input image into
fine-grained semantic regions and then performs attention within these seman-
tic regions. This fine-grained partitioning is facilitated by the recently proposed
segment anything model (SAM) [21], which exhibits strong segmentation ca-
pabilities even in LQ images with severe degradation. Compared to previous
attention methods (e.g., [16,17]), which typically treat the entire image as a sin-
gle region or divide the image into patch-based regions with fixed shapes, our
proposed R-MSA offers better flexibility and interpretability. Firstly, through
the dynamic semantic region partitioning by SAM, pixels within each region of
R-MSA possess similar semantic information [22], which can complement each
other, thereby reducing interference from unrelated regions during attention op-
erations and addressing the flaw (1). Secondly, the semantic information within
each region of R-MSA remains complete and continuous, avoiding the disruption
of semantic content continuity caused by the coarse patch division in flaw (2).

In this paper, we introduce a region attention transformer (RAT) for med-
ical image restoration. RAT utilizes the powerful SAM model to partition the
input into non-overlapping semantic regions in a data-dependent manner. Sub-
sequently, a novel region-based multi-head self-attention (R-MSA) mechanism
is introduced, which conducts attention computation within these semantic re-
gions. Due to its selective attention mechanism, R-MSA is interpretable and en-
sures that only pixels within the same semantic region complement each other,
thereby eliminating interference from irrelevant regions. In addition, consider-
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ing the varying difficulty levels across distinct image regions, we propose a focal
region loss that prioritizes the recovery of high-difficulty regions during train-
ing. This is achieved by dynamically assigning loss weights to different regions,
with higher weights specifically allocated to the high-difficulty regions. Extensive
experiments demonstrate that our proposed RAT achieves state-of-the-art per-
formance in PET image synthesis, CT image denoising, and pathological image
super-resolution. The contributions of our work can be summarized as follows:

– We introduce a novel region attention transformer (RAT) for medical im-
age restoration, which incorporates semantic knowledge obtained from the
powerful segment anything model (SAM), resulting in a more interpretable
framework. RAT could be one of the first methods to utilize SAM to boost
medical image restoration.

– We propose a novel region-based multi-head self-attention mechanism (R-
MSA), designed to perform self-attention within semantic regions partitioned
by SAM. The R-MSA ensures that attention operations are confined to sim-
ilar areas, effectively eliminating interference from irrelevant regions.

– We introduce a focal region loss to prioritize the recovery of high-difficulty re-
gions during training, significantly enhancing image restoration performance.

2 Method

As is shown in Fig. 1, the proposed region attention transformer (RAT) consists
of a U-shaped restoration branch and a segment anything model (SAM) branch
that provides region guidance for the restoration process. Specifically, given a
low-quality (LQ) medical image ILQ, RAT first applies a 3×3 convolution as in-
put projection to obtain shallow features ISF . Next, these shallow features ISF

undergo a 2-level encoding, resulting in low-resolution latent features ILF , with
each encoding level consisting of multiple convolution blocks. The latent features
ILF are then refined by RAT blocks for modeling long-range dependencies with
attention. In this process, the SAM branch provides region guidance to guar-
antee that the RAT block conducts attention within the same semantic regions
and mitigates non-similar content interference. The refined latent features ÎLF

then undergo a 2-level decoding and progressively recover the high-resolution
features. Finally, a 3×3 convolution is applied as output projection to generate
residual image IR. The restored output image is obtained by element-wise sum:
ÎHQ = ILQ + IR. Notably, NAFBlock [23] is chosen for convolution blocks in
the encoding and decoding stages due to its simplicity and effectiveness. Feature
downsampling and upsampling operations are achieved using pixel-unshuffle and
pixel-shuffle operations. To assist the restoration process, the encoder features
are summed with the decoder features via skip connections. Additionally, a fo-
cal region loss is introduced to prioritize the recovery of high-difficulty regions
during training. In the following subsection, we will present our proposed RAT
block as well as the focal region loss in detail.
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Fig. 1. Overall architecture of the proposed region attention transformer (RAT).

2.1 Region Attention Transformer Block

As illustrated in Fig. 1, the basic layers of the RAT block exhibit a structure
similar to the original transformer [16], including consecutive modules of MSA
and multi-layer perceptron (MLP), along with layer normalization (LN) applied
before them. The main distinction lies in our proposed region-based MSA (R-
MSA). For a comprehensive understanding, we delve into the RAT block across
three parts: region partitioning, region attention, and cross-region connection.

Region Partitioning. Region partitioning determines where attention is
conducted. Previous attention methods relying on fixed region partitioning of-
ten suffer from interference caused by dissimilar content and disruption of se-
mantic content continuity. To overcome these challenges, we propose to parti-
tion the input feature into semantic regions that preserve structural continuity
while minimizing interference from irrelevant regions. This is based on a pow-
erful large-scale foundational model: the Segment Anything model (SAM) [21].
SAM can accurately segment any object in any image, including medical images,
without the need for additional training. Given the input image ILQ, the region
partitioning masks through SAM can be expressed as:

M = Postprocess(SAM(ILQ)), (1)

where Postprocess(·) ensures that partitioning bianry masks M ∈ RH×W×L

divide the image into L (which depends on the input image) non-overlapping
regions, guaranteeing that each pixel in the image is assigned to a unique region.
The pixel belonging to multiple mask regions is categorized into the smallest
and finest among them, while the one not belonging to any masks generated by
SAM is classified as the background region.

Region Attention. After obtaining the region partitioning binary masks
M , one straightforward way to compute attention is to iterate through each re-
gion and perform attention within it. However, such loop-based computations
are highly time-consuming. To address this, we draw inspiration from the Swin
Transformer [17] to apply masks on attention maps. This allows for effective
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control over attention regions while leveraging the efficiency of rapid batch com-
putation. Unlike the Swin Transformer, our masks are data-dependent and offer
better interpretability. The attention mask can be acquired as follows:

M ′ = Reshape(NearestInterpolation(M)), (2)

MATT = λ
L∑

i=1

(
1−M

′

iM
′⊤
i

)
, (3)

where Eq. 2 interpolates M to the target spatial resolution H ′ × W ′ and re-
shapes the result to M ′ ∈ RH′W ′×L. Eq. 3 acquires the attention mask MATT ∈
RH′W ′×H′W ′

by assigning negative infinite values, denoted by λ, to the correla-
tion scores between pixels from different semantic regions. Consequently, given
the Q, K, V ∈ RH′W ′×C′

, which are respectively the query, key, and value from
the linear projection of input feature X ∈ RH′W ′×C′

, the mechanism of R-MSA
can be formulated as follows:

R-MSA(Q,K, V ) = Softmax
(
MATT +QKT /

√
d
)
V, (4)

where d is the attention head number. The attention mask MATT is added to
exclude potential correlations between pixels from different semantic regions,
thus constraining the attention range within individual semantic regions.

Cross-Region Connection. To maintain interaction between semantic re-
gions, the RAT block utilizes two consecutive transformer layers, with a window-
based MSA (W-MSA) [17] transformer layer immediately following the R-MSA
transformer layer, as illustrated in Fig. 1. The W-MSA transformer layer parti-
tions the input feature into non-overlapping windows, some of which cover the
boundaries between different semantic regions in R-MSA. Performing attention
computation within these windows facilitates connections between different re-
gions in R-MSA.

2.2 Focal Region Loss

Considering that the restoration difficulty varies across different regions of the
image, directing the model’s focus towards the high-difficulty region aids in learn-
ing the recovery of intricate details within the image. Hence, we follow focal loss
[24] and introduce a focal region loss utilizing partitioning masks M to prioritize
the recovery of high-difficulty regions:

LFR =
L∑

i=1

(1 + γwi)
∣∣∣ÎHQ

Mi
− IHQ

Mi

∣∣∣ , (5)

where ÎHQ
Mi

and IHQ
Mi

denote the Mi region of the restored image and high-quality

image, respectively. The normalized weighting parameter wi =

∣∣∣ÎHQ
Mi

−IHQ
Mi

∣∣∣δ
max

{∣∣∣ÎHQ
Mj −IHQ

Mj

∣∣∣δ}L

j=1
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Table 1. Comparisons of PET image synthesis on the private dataset.

Method DCSRN [2,1] Xiang’s [25] DCNN [3] CycleWGAN [4] AR-GAN [5] RAT

PSNR↑ 40.3702 ± 2.5205 40.4753 ± 2.4685 40.6273 ± 2.4153 40.6238 ± 2.5270 40.5832 ± 2.6436 40.9487 ± 2.5233

SSIM↑ 0.9686 ± 0.0121 0.9688 ± 0.0121 0.9699 ± 0.0116 0.9700 ± 0.0118 0.9702 ± 0.0119 0.9712 ± 0.0113

DCSRN Xiang’s DCNN CycleWGAN AR-GAN RATLQ HQ

Fig. 2. Visual comparison among methods on PET image synthesis.

dynamically assigns weights to prioritize high-difficulty regions. δ and γ are scal-
ing factors for flexibility. LFR degenerates to L1 loss when γ = 0.

3 Experiments and Results

3.1 Dataset

We conduct experiments on three typical medical image restoration tasks: PET
image synthesis, CT image denoising, and pathological image super-resolution.

PET Image Synthesis. We acquire 115 HQ PET images using the Po-
larStar m660 PET/CT system in list mode, with an injection dose of 293MBq
18F-FDG. LQ PET images are generated through list mode decimation with
a dose reduction factor of 12 [25]. Both HQ and LQ PET images are recon-
structed using the standard OSEM method [26]. Each PET image has 3D shapes
of 192×192×416 and is divided into 192 2D slices sized 192×416. Slices contain-
ing only air are excluded. Patient data are divided into 90 for training and 25
for testing.

CT Image Denoising. We employ the dataset from the 2016 NIH AAPM-
Mayo Clinic Low-Dose CT Grand Challenge [27], which comprises paired HQ
CT images taken with normal dose and LQ CT images with quarter dose, each
sized 512x512. These images are collected from 10 patients, with a division of 9
for training and 1 for testing.

Pathological Image Super-Resolution. We utilize the TMA dataset [28],
which comprises 573 HQ pathological images with an average size of 3249×3249.
The LQ images are acquired via 4× bicubic downsampling and subsequently
upsampled back to the original resolution. We partition these images into 460
for training and 113 for testing.
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Table 2. Comparisons of CT image denoising on the AAPM [27] dataset.

Method CNN [3] WGAN-VGG [9] REDCNN [10] CTformer [11] EDCNN [12] RAT

PSNR↑ 41.9620 ± 0.7087 43.6399 ± 1.4728 45.5887 ± 1.3911 45.6322 ± 1.4139 45.6986 ± 1.3931 45.8933 ± 1.4230

SSIM↑ 0.9627 ± 0.0108 0.9610 ± 0.0156 0.9742 ± 0.0100 0.9743 ± 0.0101 0.9746 ± 0.0098 0.9754 ± 0.0098

CNN CTFormer EDCNNLQ REDCNNWGAN-VGG RAT HQ

Fig. 3. Visual comparison among methods on CT image denoising.

3.2 Implementation

The convolution blocks at different levels of the model are set to N1 = N2 =
N4 = N5 = 2, with N3 = 12 for RAT blocks. The number of channels after
input projection is set to C = 64. Both R-MSA and W-MSA have 8 attention
heads. The value of negative infinity in the R-MSA attention mask MATT is set
to λ = −1000. The window size of W-MSA is set to 4. The well-trained SAM
model [21] with the ViT-B backbone is used for region partitioning. The scaling
factors in the loss function LFR are set to γ = 1e−3 and δ = 1. The patch size
for training CT image denoising and pathological image super-resolution is set
to 256×256, while for PET image synthesis, it is set to 192×192. The model is
trained using the Adam optimizer for 200K iterations, starting with an initial
learning rate of 2e−4, gradually reduced to 1e−6 using cosine annealing.

3.3 Comparison Experiment

We assess RAT against five PET image synthesis methods, five CT image denois-
ing methods, and five pathological image super-resolution methods. Specifically,
the PET image synthesis baselines consist of DCSRN [2,1], Xiang’s method [25],
DCNN [3], CycleWGAN [4], and AR-GAN [5]. The CT image denoising baselines
encompass CNN [8], WGAN-VGG [9], REDCNN [10], EDCNN [12], and CT-
former [11]. The pathological image super-resolution methods include SRCNN
[29], EDSR [30], RCAN [31], Li’s method [13], and SwinIR [14]. To evaluate
these methods, we employ commonly used metrics including PSNR and SSIM.

The quantitative comparison results for PET image synthesis, CT image de-
noising, and pathological image super-resolution are presented in Tables 1, 2,
and 3, respectively. It is evident that our proposed RAT surpasses all meth-
ods in comparison, achieving state-of-the-art performance across all three tasks.
In contrast to CNN-based methods, RAT demonstrates superior performance
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Table 3. Comparisons of pathological image super-resolution on the TMA [28] dataset.

Method SRCNN [29] Li’s [13] EDSR [30] RCAN [31] SwinIR [14] RAT

PSNR↑ 22.5851 ± 1.1663 22.9006 ± 1.1671 22.9904 ± 1.1697 23.2188 ± 1.1742 23.2477 ± 1.1824 23.3434 ± 1.1826

SSIM↑ 0.7071 ± 0.0579 0.7204 ± 0.0588 0.7276 ± 0.0574 0.7385 ± 0.0573 0.7398 ± 0.0576 0.7436 ± 0.0573

SRCNN Li’s EDSR RCAN SwinIR RATLQ HQ

Fig. 4. Visual comparison among methods on pathological image super-resolution.

by leveraging long-range dependencies of attention. Compared to Transformer-
based methods such as CTformer [11] and SwinIR [14], RAT exhibits superior
results attributed to the flexible and accurate region partitioning of R-MSA,
which effectively eliminates potential interferences from irrelevant regions and
preserves semantic content continuity. Visual comparisons across the three tasks
are depicted in Figs. 2, 3, and 4, respectively, clearly illustrating that our pro-
posed RAT excels in recovering structures and details.

3.4 Ablation Study

We conduct ablation experiments on the attention mechanism and loss compo-
nents proposed in this paper. Regarding the attention mechanism, we compare
our proposed R-MSA with other attention mechanisms such as standard MSA
[16] and W-MSA [17] by replacing R-MSA with these attention mechanisms.
The experimental results, as shown in Table. 4, demonstrate that our proposed
R-MSA significantly outperforms MSA and W-MSA across the three tasks. This
is attributed to the finer region partitioning, which can more effectively avoid
interference from irrelevant regions, thereby achieving better image restoration.
Furthermore, Table. 4 also indicates a stable improvement in the proposed focal
region loss across the three different tasks, demonstrating its effectiveness.

Table 4. Ablation experiments on components of attention mechanism and loss.

Component Method
PET Image Synthesis CT Image Denoising Pathological Image Super-Resolution

PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

Attention
MSA 40.5324 ± 2.2975 0.9704 ± 0.0115 45.8102 ± 1.4170 0.9749 ± 0.0098 23.2581 ± 1.1784 0.7406 ± 0.0576

W-MSA 40.6983 ± 2.4798 0.9702 ± 0.0116 45.8616 ± 1.4191 0.9753 ± 0.0098 23.3035 ± 1.1847 0.7423 ± 0.0572
R-MSA 40.9487 ± 2.5233 0.9712 ± 0.0113 45.8933 ± 1.4230 0.9754 ± 0.0098 23.3434 ± 1.1826 0.7436 ± 0.0573

Loss
L1 40.8774 ± 2.5206 0.9710 ± 0.0114 45.8810 ± 1.4214 0.9753 ± 0.0098 23.3145 ± 1.1838 0.7427 ± 0.0574
LFR 40.9487 ± 2.5233 0.9712 ± 0.0113 45.8933 ± 1.4230 0.9754 ± 0.0098 23.3434 ± 1.1826 0.7436 ± 0.0573
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3.5 Conclusion

In this paper, we introduce a novel region attention transformer (RAT) for med-
ical image restoration. RAT conducts attention within similar semantic regions,
facilitating pixels with similar semantic information to complement each other
and thereby mitigating interference from non-similar content. Additionally, a
focal region loss is introduced to direct the model’s focus towards recovering
challenging regions. Experiments demonstrate that RAT achieves state-of-the-
art performance in PET image synthesis, CT denoising, and pathological image
super-resolution.
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