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Abstract. Positron emission tomography (PET) is a well-established
functional imaging technique for diagnosing brain disorders. However,
PET’s high costs and radiation exposure limit its widespread use. In
contrast, magnetic resonance imaging (MRI) does not have these lim-
itations. Although it also captures neurodegenerative changes, MRI is
a less sensitive diagnostic tool than PET. To close this gap, we aim
to generate synthetic PET from MRI. Herewith, we introduce PASTA, a
novel pathology-aware image translation framework based on conditional
diffusion models. Compared to the state-of-the-art methods, PASTA ex-
cels in preserving both structural and pathological details in the target
modality, which is achieved through its highly interactive dual-arm ar-
chitecture and multi-modal condition integration. A cycle exchange con-
sistency and volumetric generation strategy elevate PASTA’s capability
to produce high-quality 3D PET scans. Our qualitative and quantita-
tive results confirm that the synthesized PET scans from PASTA not
only reach the best quantitative scores but also preserve the pathology
correctly. For Alzheimer’s classification, the performance of synthesized
scans improves over MRI by 4%, almost reaching the performance of
actual PET. Code is available at https://github.com/ai-med/PASTA.

1 Introduction

To date, various tools support diagnosing brain disorders, including MRI, PET,
and cognitive tests [1]. Structural MRI reveals brain regional atrophy, while flu-
orodeoxyglucose PET tracks glucose metabolism. In Alzheimer’s disease (AD)
and related brain disorders, glucose uptake drops severely in certain brain re-
gions [15]. By sensitively reflecting functional disorders, PET has proven to have
higher accuracy in early dementia detection and differential diagnosis [19, 3].

Despite its high diagnostic value, PET is commonly not offered in most med-
ical centers worldwide due to its high cost and high-dose radiation exposure [13].
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Fig. 1: For Alzheimer’s disease, PET shows reduced glucose uptake in the tem-
poroparietal lobe (bottom circles), mirroring atrophy on MRI with higher sen-
sitivity. While state-of-the-art diffusion models fail to recover such pathology in
the synthesized PET, PASTA achieves significant improvements.

While MRI is more accessible thanks to its non-invasive nature, it lacks the same
functional insights as PET [7]. We aim to bridge this gap by converting MRI
into synthetic PET, thereby extending the reach of functional brain imaging to
facilitate AD diagnosis. Translating structural to functional imaging in medicine
is challenging due to the possible inclusion of unrealistic pathology, leading to
unreliable diagnoses. Yet, generating pathology-preserved images remains an un-
derexplored area with significant potential for clinical impact.

Previous works on MRI to PET translation focus on adopting generative
adversarial networks (GAN) [11, 34]. However, GANs are susceptible to mode
collapse and unstable training [2], which can reduce the model performance and
reliability. Recent advances in diffusion models (DM) [28, 8] introduced a new era
in high-quality image generation with enhanced training stability, giving rise to
advanced image translation frameworks [18, 25]. Despite these strides, existing
DM-based translation methods primarily focus on preserving structural integrity,
overlooking the critical aspect of pathology recovery, as shown in Fig. 1.

We address this gap by introducing PASTA, an efficient end-to-end DM-
based framework for clinically valuable pathology-aware volumetric MRI to PET
translation. It is based on a symmetric dual-arm architecture with adaptive
conditional modules for multi-modal condition integration. PASTA also presents
a memory-efficient approach for artifact-free volumetric generation and a cycle
exchange consistency strategy, further lifting its generation quality.

In summary, we make the following contributions:

• A novel end-to-end cross-modal MRI to PET translation framework based
on diffusion models with volumetric generation.

• Adaptive normalization layers for integrating multi-modal conditions to fa-
cilitate pathology awareness.

• Cycle exchange consistency for effective conditional DMs training.
• Quantitative and qualitative experiments show that PASTA achieves low re-

construction errors and preserves AD pathology to boost diagnosis accuracy.

Related Work Previous research on cross-modal MRI to PET translation
mainly focused on GAN-based methods [32, 16, 33, 10, 26, 4, 27], with innovations
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Fig. 2: PASTA conditions the feature maps h from the denoiser arm on timestep
t, clinical data c, and task representation hm from the conditioner arm.

like the sketcher-refiner scheme [32], GANDALF for MRI to PET generation in
AD diagnosis [27], bidirectional GAN for 3D brain MRI-to-PET synthesis [10],
and a GAN-based residual vision Transformers for multimodal medical image
synthesis [4]. Diffusion models outperform GANs in capturing complex distribu-
tions [28, 8, 5] and are emerging in medical imaging for unconditional generation
and cross-contrast MRI translation [35, 22, 21]. Their application to MRI to PET
translation, unexplored thus far, offers a promising avenue.

2 Proposed Method

Given two datasets XA and XB from modalities A and B, cross-modal image
translation aims to learn a mapping from A to B in a paired manner. In medical
imaging, this process is constrained on generating images that both match the
ground truth (GT) and preserve pathology evidence. However, current DM-based
translation methods focus on style transfer and structural maintenance [31, 14],
which are insufficient for medical translation, as shown in Fig. 1.

Hence, we propose establishing a strong interaction with the input modal-
ity on the conditional denoising diffusion probabilistic models (DDPM) by in-
tegrating input features at multiple scales, giving rise to a symmetric dual-arm
architecture. PASTA consists of a conditioner arm, a denoiser arm, and adaptive
conditional modules, as shown in Fig. 2. Both arms adopt symmetric U-Net [24].
The interaction between the two arms and the fusion of additional conditions
are achieved through the adaptive group normalization layers (AdaGN) [5]. This
symmetric design ensures that matching blocks across the two arms share the
same spatial resolution, enabling multi-scale feature map interactions.

Conditioner Arm: We define our training data as DT = (Mi
T,Pi

T)
N

i=1,
which comprises N pairs of MRI M ∈ RH×W×D and its corresponding PET
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P ∈ RH×W×D. The objective is to learn a model G(·) on DT, such that given any
unseen MRI input Ms /∈ DT, its PET counterpart is inferred as Ps = G(Ms).
The MRI input M first goes through the conditioner arm to derive multi-scale
task-specific representations hm, given by M̂ = ϕω(M;hm), where ϕω(·) is
the conditioner model parameterized by ω. The task-specific representations
hm = {h1

m, . . . ,hn
m} includes the intermediate feature maps from ϕω(·) at mul-

tiple scales, with n the number of residual blocks in the conditioner arm. These
representations will facilitate the PET synthesis in the other arm. The condi-
tioner arm executes predefined tasks to convert MRI into hm, including MRI
reconstruction and MRI-to-PET translation, with each task dictating its own
training objective. Taking MRI-to-PET translation as the predefined task, the
arm is trained to minimize the pixel-level distance between the original PET
and the conditioner output, using distance metric dist(·) like L1 or L2:

Ltask(ω) = EM,P dist(ϕω(M),P). (1)

We employ MRI-to-PET translation as the predefined task, as it gives the best
empirical performance. The efficacy of alternative tasks is investigated in Sec. 4.

Adaptive Conditional Module: We propose to use the adaptive group
normalization layers (AdaGN) [5] to apply multi-modal conditions to the fea-
ture maps h = {h1, . . . ,hn} in each residual block from the denoiser arm. Our
AdaGN layer adapts conditions of: 1) Timestep t in the diffusion process; 2) Task-
specific representations hm from the conditioner arm at corresponding scales; 3)
Clinical data c ∈ Rc×n of an individual subject. Our AdaGN is defined as:

AdaGN(h, t, c,hm) = cs(hm(ts GroupNorm(h) + tb), (2)

where (ts, tb) ∈ R2×c = MLP(pos(t)) is the output of a multilayer perceptron
(MLP) with a sinusoidal encoding function pos(·), and cs = MLP(c). These
modules are used throughout the dual-arm architecture. To enhance the accuracy
and pathology preservation in generated PET scans, we incorporate available
clinical data into our model, including demographic information (age, gender,
education), cognitive scores (MMSE [6], ADAS-Cog-13 [20]), and AD biomarker
ApoE4 [30]. Overall, the AdaGN layer fuses the multi-modal conditions including
both structural and pathological evidence.

Denoiser Arm performs the reverse process of DDPM by restoring the clean
PET P0 from the noise. It produces Pt at each diffusion timestep t starting from
the Gaussian noise ϵ at t = T , conditioned on multi-modal variables via AdaGN:

P0:T = PT

T∏
t=1

xθ (Pt−1 | hm, c) , (3)

where xθ(·) denotes the denoising model parameterized by θ. The symmetric
layout of PASTA allows the feature maps in xθ at each scale to be conditioned
by an equivalent scale of the task representation from the conditioner arm, which
augments the impact of the conditional modality. To further enhance pathology
awareness, we integrate MetaROIs [17] as pathology priors to guide the model
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Fig. 3: Cycle exchange consistency (CycleEx) strategy of PASTA.

to the important hypometabolic regions of abnormal metabolic changes in AD
patients. MetaROIs are a set of pre-defined regions of interest based on coordi-
nates cited frequently in other PET studies comparing AD and normal subjects.
We convert MetaROIs into a loss weighting map λR ∈ RH×W×D and add to the
denoiser arm. During training, the MetaROIs of the denoised PET images will
be more penalized when they deviate from the GT PET, given by:

Lt
diff (θ) = λR · EP0,ϵ[∥P0 − xθ(αtP0 + σtϵ, c,hm)∥22]. (4)

Cycle Exchange Consistency (CycleEx): PASTA goes through a Cy-
cleEx strategy shown in Fig. 3. CycleEx stems from the idea in [34], where
the learned translation mapping follows cycle-consistency: for each image Mi

from the MRI domain, given two mappings Gp: M → P and Gm: P → M,
the image translation cycle should bring Mi back to its original image, i.e.
Mi → Gp(Mi) → Gm(Gp(Mi)) ≈ Mi, as forward cycle consistency. Similarly,
for each image Pi from the PET domain, Gp and Gm should also satisfy back-
ward cycle consistency: Pi → Gm(Pi) → Gp(Gm(Pi)) ≈ Pi. In the CycleEx,
the mapping Gm shares the same network as Gp, but only with the exchanged
conditioner and denoiser arm: in the forward cycle, the conditioner arm ϕω used
to process MRI to hm during mapping Gp, will be reused for denoising to syn-
thesize MRI in Gm; the denoiser arm xθ used to synthesize PET in Gp will be
reused to process PET to representations hp in Gm. The backward cycle acts
similarly. Due to the symmetric nature of the two arms, this exchange can be
achieved conveniently. This cycling approach requires only two trainable net-
works ϕω and xθ. CycleEx introduces three more conditional diffusion processes
without adding additional learnable parameters. Both cycles introduce the cycle-
consistency loss:

Lcycle(ω, θ) = EM dist(Gm(Gp(M)),M) + EP dist(Gp(Gm(P),P), (5)

where dist(·) can be L1 or L2. Such a setup enforces the information sharing
between the two arms, adding additional supervision and regularization to the
image translation. Finally, the combined training objective of PASTA is:

L = λtask ∗ Ltask + λdiff ∗ Ldiff + λcycle ∗ Lcycle, (6)
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where λtask, λdiff , and λcycle are constant factors.
Volumetric Generation: PASTA introduces a 2.5D strategy for volumetric

synthesis. A full 3D network offers inherent inter-slice consistency but is limited
by high computational demands. Moreover, the shortage of paired, multimodal
medical data hinders its proper training. Thus, we adopt 2D convolutional layers
in the network with 2D slices as input, but cater to the input channel with N
consecutive neighboring slices of each input slice along the same axis. After train-
ing, the network produces the target slice with its N neighbors. These neighbors
are weighted by the distance to the target slice, with closer ones higher. Sum-
ming all the weighted slices and averaging overlaps for each slice position yields
a consistent 3D scan. This strategy enables the model to efficiently mitigate the
slice inconsistencies introduced by the 2D network.

3 Experiments

Models and Hyperparameters: We adopt U-Net for diffusion models as in [5]
and DDIM sampling strategy [29] with timestep T = 1000, input neighboring
slices number N = 15, and λtask = 0.1, λdiff = 1, λcycle = 1 for the training
objective after an exhaustive search. Sec. A.1 reports more model parameters.
Datasets and Preprocessing: We use 1,248 paired T1-weighted MRI and
PET from the Alzheimer’s disease neuroimaging initiative (ADNI) database [12].
We include the data of cognitively normal (CN, n=379), subjects with mild
cognitive impairment (MCI, n=611), and Alzheimer’s disease (AD, n=257). Both
modalities are co-registered with the size of 96 × 112 × 96. Data are split into
train/validation/test sets using only baseline visits, ensuring that diagnosis, age,
and sex are balanced across sets. Sec. A.2 details on data preprocessing.
Baselines: Our baseline methods include Pix2Pix [11], CycleGAN [34], ResVit [4],
BBDM, and BBDM-LDM [18]. ResVit [4] is a GAN-based method integrating
ResNet and ViT for medical image translation. Unfortunately, other GAN-based
MRI to PET translation approaches do not provide open-source codes [26, 27,
32]. To ensure the inclusion of representative GAN-based methods in our compar-
ison, we implemented the widely-used image translation techniques Pix2Pix [11]
and CycleGAN [34]. While none of the SOTA DM-based translation models has
been used for MRI to PET translation, BBDM [18] stands out for its superior
replicability and performance, making it our choice for adaptation and compari-
son. We also include its variation BBDM-LDM based on latent diffusion models
(LDM) [23]. The same training and evaluation data are used as in PASTA.
Evaluation: A comprehensive evaluation of all methods is performed both qual-
itatively and quantitatively. We compute mean absolute error (MAE), mean
squared error (MSE), peak signal-to-noise ratio (PSNR), and structure similar-
ity index (SSIM) between the real and synthesized PET. We implement a down-
stream AD classification task with 5-fold cross-validation to further validate the
pathology preservation. For qualitative assessment, we present our generative
results with additional evaluation on 3D-SSP maps and fairness in Sec. A.4.
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Fig. 4: Qualitative results for a normal subject (top) and an AD patient (middle)
with magnified specific pathology (hypometabolism in temporoparietal lobes).

4 Results

Qualitative Results and Clinical Assessment: Fig. 4 shows qualitative
results for PASTA and baseline methods. We analyzed these results together
with our clinical experts. It clearly shows that PET generated by PASTA have
higher similarity and fidelity to the real ones than other methods. In Pix2Pix and
CycleGAN, synthetic scans deviate severely from the ground truth (GT) with
obvious artifacts. For AD patients, PASTA’s generation accurately grasps the
dropped metabolism in the temporoparietal lobe, a region highly associated with
AD, as in the GT. Other DM-based models, BBDM and BBDM-LDM, recover
the structure well in the generated PET but lack in transferring pathology cor-
rectly. ResVit, developed for medical translation, improves pathology awareness
but generates less accurate anatomical structures. Overall, PASTA synthesizes
scans with superior consistency to the GT both pathologically and structurally.

Based on feedback from our clinical collaborators, PASTA’s PET images
are deemed realistic and closely comparable to actual PET. Although generated
images tend to be smoother, this is not considered a drawback in clinical settings.
Nuclear physicians typically apply filters on PET, and AD diagnosis does not
require high-resolution edge details [9]. Further, pathology is less pronounced
in generated PET, which is to be expected as the synthesis relies on MRI, a
modality less sensitive to functional alterations. Yet, synthesized PETs still offer
higher pathological sensitivity for AD diagnosis than corresponding MRIs.

Quantitative Results: Tab. 1 reports quantitative metrics between GT and
synthesized PET for all methods. Consistent with the qualitative results, PASTA
generates PETs with the highest quality, owning the lowest MAE (3.45%), MSE
(0.43%), and highest PSNR (24.59), SSIM (86.29%). DM-based method BBDM
consistently has the second-best results, with a similar performance for BBDM-
LDM. However, the other GAN-based baselines, especially CycleGAN, cannot
reach on-par performance. These results confirm the potential of DMs.

Classification Results for AD Diagnosis: To assess the synthesized 3D
PET in AD diagnosis, we train AD classifiers on MRI, MRI with clinical data
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Table 1: Quantitative comparison between PASTA and the baselines.
Method MAE(%) ↓ MSE(%) ↓ PSNR ↑ SSIM(%) ↑

CycleGAN [34] 9.83 2.61 16.38 47.48
Pix2Pix [11] 5.56 1.15 19.90 73.23
ResVit [4] 6.72 1.74 19.40 69.83
BBDM-LDM [18] 3.96 0.54 23.75 84.25
BBDM [18] 3.88 0.56 23.37 84.55

PASTA 3.45 0.43 24.59 86.29

Table 2: Results for AD classification with different input modalities.
Input BACC ↑ F1-Score ↑ AUC ↑

MRI 79.23 ± 4.30 74.97 ± 5.95 85.88 ± 3.79
MRI+c 81.51 ± 3.16 77.83 ± 3.83 89.19 ± 1.41
GT PET 87.02 ± 2.35 80.77 ± 2.62 89.04 ± 1.88
Syn PET (ResVit) 78.54 ± 4.15 74.41 ± 5.28 81.80 ± 4.95
Syn PET (BBDM) 72.93 ± 8.48 70.76 ± 6.02 83.29 ± 5.13
Syn PET (PASTA) 83.41 ± 2.67 79.98 ± 3.51 91.63 ± 2.21

(c), GT PET, and synthesized (Syn) PET, respectively, using a 3D ResNet. We
use ResVit, BBDM, and PASTA for the PET generation. To mitigate potential
domain shift issues and ensure fair comparison, we train and test classifiers on
images from the same source. Tab. 2 reports the results, and, as expected, GT
PET has a higher performance than MRI. The results for PASTA also surpass
MRI in all metrics with an increase of over 4%. Clinical data only boosted MRI’s
BACC by 2%, suggesting that PASTA’s high pathology awareness is likely due
to its more effective learning of the interaction between MRI and clinical data.
While the results for PASTA in BACC are between those for MRI and GT
PET, it is almost on par with GT PET in F1-Score and achieves the highest
AUC. The results for BBDM are worse than MRI, confirming its issues with
pathology transfer, consistent with Fig. 4. ResVit achieves better accuracy than
BBDM, stemming from its better pathology awareness, as shown in the qualita-
tive results, yet is still lower than for MRI. It demonstrates the high potential
of PASTA for AD diagnosis and the necessity for pathology-aware transfer.

Ablation Study: We perform ablations to verify several designs in PASTA,
including CycleEx, the inclusion of pathology priors (λR) and clinical data (c),
different predefined task in the conditioner arm (MRI reconstruction (M2M))
and its loss weight (λtask). Sec. A.3 reports further ablations about condition
integration and positions. Tab. 3 indicates that CycleEx significantly elevates
generation quality, followed by the choice of predefined tasks and its loss weight.

5 Conclusion

We introduced PASTA for translating brain MRI to PET with conditional diffu-
sion models. Compared to current DM-based methods, PASTA excels in preserv-
ing both structural and pathological details in the target modality, achieved via a
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Table 3: Ablation studies on important designs in PASTA.
Ablation MAE(%) ↓ MSE(%) ↓ PSNR ↑ SSIM(%) ↑

w/o CycleEx 3.99 0.54 23.64 85.14
w/o λR 3.67 0.48 24.19 85.95
w/o c 3.57 0.46 24.39 86.12
PASTA (M2M) 3.78 0.50 23.78 84.77
PASTA (λtask = 1) 3.70 0.49 24.11 85.71
PASTA (λtask = 10) 3.81 0.48 24.04 83.24

PASTA 3.45 0.43 24.59 86.29

highly interactive dual-arm architecture. CycleEx and the volumetric generation
strategy elevated its ability to produce high-quality 3D PET. In AD diagnosis,
PASTA reached an improved AUC over the real PET and higher accuracy than
MRI. Its unique pathology awareness is likely due to the effective learning from
multi-modal conditions and pathology priors, yet further research is required to
explore the deeper explanation. Overall, PASTA demonstrated high potential in
bridging the gap between structural and functional brain degradation processes.
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