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Abstract. Glaucoma is one of the leading causes of irreversible blind-
ness worldwide. Predicting the future status of glaucoma is essential for
early detection and timely intervention of potential patients and avoid-
ing the outcome of blindness. Based on historical fundus images from
patients, existing glaucoma forecast methods directly predict the prob-
ability of developing glaucoma in the future. In this paper, we propose
a novel glaucoma forecast method called Coarse-to-Fine Latent Diffu-
sion Model (C2F-LDM) to generatively predict the possible features at
any future time point in the latent space based on sequential fundus
images. After obtaining the predicted features, we can detect the prob-
ability of developing glaucoma and reconstruct future fundus images for
visualization. Since all fundus images in the sequence are sampled at ir-
regular time points, we propose a time-adaptive sequence encoder that
encodes the sequential fundus images with their irregular time intervals
as the historical condition to guide the latent diffusion model, making
the model capable of capturing the status changes of glaucoma over time.
Furthermore, a coarse-to-fine diffusion strategy improves the quality of
the predicted features. We verify C2F-LDM on the public glaucoma fore-
cast dataset SIGF. C2F-LDM presents better quantitative results than
other state-of-the-art forecast methods and provides visual results for
qualitative evaluations.
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1 Introduction

Glaucoma is one of the leading causes of permanent vision loss on a global scale,
affecting a substantial populace spanning diverse age cohorts and ethnicities.
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Early detection and timely intervention play a pivotal role in mitigating vision
deterioration and avoiding the consequences of complete blindness [22]. There-
fore, forecasting the forthcoming degenerative trajectory of glaucoma has become
an urgent demand. Glaucoma forecast shows its potential to identify individuals
predisposed to glaucomatous affliction or to predict disease progression in those
already bestowed with a diagnosis [11, 14].

Different from glaucoma detection [3, 7, 27] that diagnoses the current status
of glaucoma based on the existing fundus images, glaucoma forecast predicts
the future status of glaucoma by analyzing the historical fundus images. Several
glaucoma forecast methods have been developed based on deep learning [13,
21, 20, 9]. For example, Lin et al. [16] proposed a multi-scale multi-structure
siamese network (MMSNet) to predict the progress of glaucoma based on the
current visit and the first visit. However, two fundus images lack enough ability
to capture the glaucoma changes over time. Li et al. [14] established a glaucoma
forecast dataset consisting of sequential fundus images and proposed a long
short-term memory (LSTM)-based network DeepGF to learn spatial-temporal
information from sequential fundus images of a patient. DeepGF outputs the
probability of developing glaucoma at the next time step, but cannot specify
when the next time is. Hu et al. [11] proposed a Transformer-based glaucoma
forecast network GLIM-Net for irregularly sampled sequential fundus images,
which introduced two time-related modules to control the prediction under a
specific future time. All the above glaucoma forecast methods only predict the
probability of developing glaucoma in the future, lacking visual results for further
qualitative evaluation and interpretability.

Recently, the denoising diffusion model (DDM) [10], which as a type of gen-
erative model has achieved promising attention in image generation and image
synthesis [1, 2]. DDM aims to denoise corrupted versions of the input images,
which helps it learn the true distributions and capture the underlying data struc-
ture in the pixel space. To further improve the computational efficiency and flex-
ibility, the latent diffusion model (LDM) [1, 18, 19] is developed by transforming
the diffusion process from pixel space to latent space, making them attractive for
various generative tasks. In the latent space, LDM abstracts away high-frequency
and imperceptible details, enables more fine-grained control and is more scalable
in terms of model size. By incorporating external conditional information into
the diffusion process, controllable generation can be achieved by allowing for
a more accurate representation and prediction of the variable’s behavior. For
example, Zbinden et al. [26] introduced categorical label maps and Yang et al.
[24] designed a dual-granularity conditional guidance module as the conditional
priors. Although existing works have tried to adopt the diffusion models for
semantic segmentation and object classification [24, 17, 26], their potential for
forecast tasks has yet to be fully explored.

In this paper, we propose a novel glaucoma forecast method called Coarse-to-
Fine Latent Diffusion Model (C2F-LDM) based on irregularly sampled sequential
fundus images. Our contributions are summarized as: (1) We predict the future
possible features in the latent space by the latent diffusion model based on his-
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Fig. 1. Overview of our glaucoma forecast framework, which receives the historical
sequential fundus images and corresponding time intervals and predicts the future pos-
sible features in the latent space for glaucoma forecast and fundus image reconstruction.

torical sequential fundus images, and the predicted features are used to detect
the probability of developing glaucoma and reconstruct the future fundus images
for visual evaluations; (2) We propose a time-adaptive sequence encoder to inte-
grate irregular time intervals, making the model capable of capturing the status
changes of glaucoma over time and making a flexible prediction by giving any
future time point; (3) We propose a coarse-to-fine diffusion strategy to improve
the quality of the predicted features; (4) The experimental results on the pub-
licly available glaucoma forecast dataset SIGF show that C2F-LDM performs
better than other state-of-the-art glaucoma forecast methods.

2 Methods

2.1 Forecast Framework

Fig. 1 presents our glaucoma forecast framework. Given N historical sequential
fundus images XN = {xn ∈ R3×H×W }Nn=1 and their corresponding irregular
time intervals ∆TN = {∆t(1,n) ∈ R1}Nn=1 with the first time point, we first
encode them into features in the latent space by:

FN = Gie(XN ), with FN = {fn ∈ Rd×h×w}Nn=1

TN = Gte(∆TN ), with TN = {tn ∈ Rd}Nn=1

(1)

where Gie(·) is the image encoder, Gte(·) is the time encoder, d is the feature
dimension, h × w is the size of feature maps, and H ×W is the size of fundus
images. Then, our proposed C2F-LDM generatively predicts the future feature
f̂N+1 at N+1 time point by giving a specific future time ∆t(1,N+1):

fN+1 ∼ f̂N+1 = P(FN ,TN , tN+1), with tN+1 = Gte(∆t(1,N+1)) (2)

where ∆t(1,N+1) > ∆t(1,N), fN+1 is the true feature at N+1 time point. Based
on the predicted feature f̂N+1, it is possible to detect the probability ŷN+1 of
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developing glaucoma by a feature classifier Gc, and reconstruct the future fundus
image x̂N+1 for visual evaluation by an image decoder Gr:

ŷN+1 ∈ R1 = Gc(f̂N+1), x̂N+1 ∈ R3×H×W = Gr(f̂N+1) (3)

2.2 Coarse-to-Fine Latent Diffusion Model (C2F-LDM)

C2F-LDM is built based on a conditional latent diffusion model, which contains
a coarse latent diffusion (CLD) module and a fine latent diffusion (FLD) module.
In CLD and FLD, the Gaussian noise is predicted by a conditional U-Net (CU-
Net). Fig. 2 shows the architecture of C2F-LDM.

Coarse Latent Diffusion (CLD). During training, CLD consists of a forward
diffusion process and a reverse denoising process. In the forward diffusion process,
a random noisy variable zl is sampled based on the true prior z0 across l steps:

zl =
√
αlz0 +

√
1− αlϵ, with αl =

∏
l
αl, αl = 1− βl, l ∈ [1, L] (4)

where ϵ ∼ N (0, I) is the Gaussian noise, {βl ∈ (0, 1)}Ll=1 is a predefined noise
schedule, L is the max step. After L steps, zL ∼ N (0, I) has a standard isotropic
Gaussian distribution. In our work, z0 is initialized by the true feature fN+1 at
N+1 time point. In the reverse denoising process, the true prior z0 is restored
from zL by multi-step employing CU-Net:

zl−1 =
1

√
αl

(zl −
1− αl√
1− αl

ϵθ(zl,El, C)) + σlϵ

with σl =

√
1− αl−1

1− αl
βl, C = Fhke(FN ,TN , tN+1)

(5)

where El is the step embeddings, ϵθ(zl,El, C) is the predicted noise by joint
sampling from zl and historical condition C via CU-Net, Fhke(·) is the histori-
cal knowledge encoding module (section 2.3) for generating C. In CU-Net, C is
mapped to the intermediate layers via a cross-attention mechanism. Finally, the
restored f̃N+1 ∼ z0 = pθ(z0|z1, C) follows the prior distributions of fN+1. We
minimize the noise estimation loss for training CLD by:

L(θ) = Ezl,ϵ,l||ϵ− ϵθ(zl,El, C)||22 (6)

where θ is the learnable parameters in CLD.

Fine Latent Diffusion (FLD). To further improve the quality of predicted
features, we continue to perform fine-grained diffusion by introducing f̃N+1 from
CLD and fN from the last time point of historical sequence. In the forward
diffusion process, zl is jointly sampled based on z0, fN and f̃N+1 across l steps:

zl =
√
αlz0 +

√
1− αlϵ+ (1−

√
αl)(fN + f̃N+1) (7)
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Fig. 2. Architecture of C2F-LDM for the feature forecast in the latent space.

Similarly, z0 is initialized by fN+1. In the reverse denoising process, the true
prior z0 is restored from zL by multi-step employing CU-Net:

zl−1 =
1

√
αl

(zl −
1− αl√
1− αl

ϵθ(zl,El, Cf )) + σlϵ

with Cf = Fhke(FN ,TN , tN+1, f̃N+1)

(8)

Finally, the restored f̂N+1 ∼ z0 = pθ(z0|z1, Cf ) can be used for the glaucoma
detection by a feature classifier and the fundus image reconstruction by an image
decoder. We optimize FLD by the same noise estimation loss as Eq. (6).

2.3 Historical Knowledge Encoding (HKE)

To encode sequential fundus images as a historical condition for the diffusion
process, we propose a time-adaptive sequence encoder (TASE) that stacks K
spatial-temporal (S-T) blocks, as shown in Fig. 2(c). Each S-T block is an ex-
tension of a ViT block [5] by introducing a spatial-temporal transformation [23].
Given the image feature sequence F̃N ∈ RN×d by global average pooling FN , we
append an extra learnable token r to represent the future feature at N+1 time
point. The time features TN and tN+1 are concatenated to the image feature
sequence as the input of TASE. Finally, we use a linear head to map the feature
of N+1 time point as the historical condition. The process is formulated as:

[AN
k+1,A

N+1
k+1 ] = Bk([A

N
k ,AN+1

k ]), k = 1, 2, ...,K

C = Head(AN+1
K+1)

with AN
1 = Cat(F̃N ,TN ), AN+1

1 = Cat(r, tN+1)

(9)

where Bk denotes k-th S-T block, [·, ·] indicates stacking on the sequence length
dimension, Cat(·, ·) indicates concatenating on the feature length dimension. In
FLD, r is initialized with f̃N+1 from CLD. In our framework, HKE is integrated
into CLD and FLD, and is optimized along with CU-Net.
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2.4 Multi-Stage Training (MST)

As shown in Fig. 1, our proposed glaucoma forecast framework contains an image
encoder, an image decoder, a time encoder, a feature classifier, a CLD module,
and an FLD module. The time encoder requires no training because it follows
the parameter-free time positional encoding method [11]. CLD and FLD have
their own CU-Net, and their parameters are not shared. To optimize the model
adequately, we train the different components in multiple stages. Firstly, we train
the image encoder and the image decoder by VQGAN [6]. Next, we train the
feature classifier by the glaucoma detection task while freezing the parameters
of other modules. Finally, we train CLD and FLD separately by Eq. (6).

3 Experiments

3.1 Materials and Details

The efficacy of our proposed method is estimated on the publicly available glau-
coma forecast dataset SIGF [14]. SIGF contains 405 sequences derived from
distinct eyes. Each sequence is accompanied by no fewer than 6 fundus images,
producing an average of 9 images per eye. Overall, SIGF comprises a total of
3671 fundus images. To establish a robust evaluation framework, the 405 se-
quences are randomly split for training (300), validation (35) and testing (70)
at the patient level to ensure the avoidance of any potential biases. All fundus
images are annotated with binary labels of glaucoma, i.e. positive or negative
glaucoma. The 405 sequences are temporally segmented into 1146 clips, with
each clip encompassing a continuous sequence of 6 fundus images.

The image encoder and image decoder follow the original U-Net encoder
and decoder with three down-sampling operations, without skip connection. The
feature classifier is a multi-layer perception with six layers. They were pre-trained
based on two external glaucoma detection datasets LAG [15] and ACRIMA
[4]. All fundus images are resized to 256×256 for consistent input. The feature
dimension d is set to 768. K in HKE is set to 6. Experiments are built in NVIDIA
TITAN Xp GPUs. More details can be found in our code1.

3.2 Experimental Results

Quantitative Comparison with State-of-the-art Methods. We compare
the proposed C2F-LDM with five other state-of-the-art glaucoma forecast meth-
ods, including CoG-Net [12], CABNet [8], MIL-VT [25], DeepGF [14] and GLIM-
Net [11]. CoG-Net, CABNet and MIL-VT are the classification models for glau-
coma detection on fundus images and we convert them for glaucoma forecast by
supervising the models with the future status of glaucoma. DeepGF and GLIM-
Net are the glaucoma forecast methods based on sequential fundus images.
DeepGF learns the dynamic glaucoma transition based on the LSTM network,
1 https://github.com/ZhangYH0502/C2F-LDM
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Table 1. Quantitative comparison of glaucoma forecast with state-of-the-art methods
over SIGF dataset based on the accuracy (ACC), sensitivity (SEN), specificity (SPE)
and AUC metrics. For each metric, we show the mean and standard deviation.

Methods Core Technology ACC (%) SEN (%) SPE (%) AUC (%)

CoG-Net [12] ImgPro+ConvNet 77.0±2.0 72.5±3.6 77.2±1.7 81.8±3.5
CABNet [8] ConvNet+Atten. 73.9±1.6 74.4±1.6 73.9±1.6 78.7±2.6
MIL-VT [25] Trans.+MIL 79.7±1.1 77.8±3.4 79.8±1.2 83.4±1.6
DeepGF [14] ConvNet+LSTM 76.0±4.8 79.4±1.3 75.9±5.0 85.0±2.5
GLIM-Net [11] Trans.+ConvNet 89.5±0.8 87.6±0.9 89.6±0.8 93.6±0.3

C2F-LDM Trans.+Diffusion 94.4±0.594.4±0.594.4±0.5 93.8±0.793.8±0.793.8±0.7 94.6±0.694.6±0.694.6±0.6 95.5±0.595.5±0.595.5±0.5

but DeepGF has to make the prediction sequentially due to the unidirectional
limitations of LSTM network. GLIM-Net models the fundus image sequence
based on the Transformer architecture to better suit the irregularly sampled
data by inserting the position encoding and time encoding. Table 2 presents
the core technologies of all methods and compares the quantitative glaucoma
forecast results by four metrics. Among all comparative methods, GLIM-Net
significantly performs better than the other four methods, indicating the advan-
tage of Transformer architecture in modeling sequence data and the importance
of introducing the time factors. Furthermore, the proposed C2F-LDM performs
an obvious quantitative improvement over GLIM-Net by achieving 94.4%, 93.8%,
94.6%, and 95.5% in accuracy, sensitivity, specificity and AUC, respectively.

Qualitative Evaluation via Visualization. We first evaluate the recon-
structed fundus images by decoding the predicted features via the image decoder.
Fig. 3(a) shows two cases of glaucoma sequences from different patients, wherein
we only show the first time point in the historical sequence and the future N+1
time point we require to predict. In the first case, the status of glaucoma re-
mains negative over time. In the second case, the status of glaucoma changes
from negative to positive at the N+1 time point. In these two cases, the recon-
structed fundus images own high enough image quality and keep the consistent
glaucoma status with the true fundus images. We also utilize the t-SNE method
to visualize the distributions of the true features and the predicted features from
the feature classifier. As shown in Fig. 3(b), the predicted features are diacritical
enough through the feature classifier, and show consistent distributions with the
true features. Therefore, C2F-LDM has the potential to predict the future status
of glaucoma interpretively by providing visual results as references.

3.3 Ablation Study

We first investigate the impact of latent diffusion by evaluating the results from
FLD, CLD and HKE respectively. As shown in Table 2(b), the quantitative
comparisons demonstrate that CLD and FLD effectively improves the quality
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Fig. 3. (a) Reconstructed fundus images of two cases by the image decoder. (b) Visu-
alization of the true features and the predicted features from the feature classifier.

of predicted features based on historical conditions rather than directly using
historical features for glaucoma forecast. From the visual comparisons in Fig. 3,
we find that the quality of reconstructed fundus images from HKE is deficient,
but CLD and FLD present powerful potential to improve image quality. In the
results of CLD and FLD, pathological details keep high consistency with ground
truth, while FLD shows more similar color distributions and pathological details
with ground truth than CLD by introducing more controlled conditions.

Next, we verify the effect of TASE in the HKE module. As shown in Fig. 2(c),
TASE contains two self-attention layers S-MSA and T-MSA for spatial and tem-
poral modeling, and both of them are the reuse of multi-head self-attention lay-
ers. S-MSA first learns the spatial relationship among different sequences. Given
the output of S-MSA with shape (N+1)×B×d, we reshape it into B×(N+1)×d
and then send it into T-MSA to learn the temporal relationship on the sequence
dimension. When we replace TASE with the original ViT block, the total quan-
titative results drop by about 2% by comparing (a) and (c) in Table 2.

We lastly highlight the necessity of multi-stage training (MST) by removing
FLD and training CLD with all other modules end-to-end. By comparing the
first items of (b) and (d) in Table 2, mixed end-to-end training leads to obvious
performance degradation because the image encoder fails to extract effective
features from fundus images. Therefore, all other modules should be pre-trained
before training these two latent diffusion modules.

4 Conclusion

This paper proposes a novel glaucoma forecast method C2F-LDM based on
sequential fundus images. The main difference with existing forecast methods is
that C2F-LDM generatively predicts the future possible features of glaucoma in
the latent space rather than directly predicting the probabilities of developing
glaucoma. Then the predicted features are used for glaucoma detection and
image reconstruction. Besides, C2F-LDM considers irregular time intervals and
can predict the glaucoma status at any future time point by artificial setup,
showing higher flexibility and interpretability for clinical scenarios. C2F-LDM
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Table 2. Ablation studies of different components based on the quantitative evaluation.

HKE CLD FLD TASE MST ACC (%) SEN (%) SPE (%) AUC (%)

(a) ✓ ✓ ✓ ✓ ✓ 94.4±0.594.4±0.594.4±0.5 93.8±0.793.8±0.793.8±0.7 94.6±0.694.6±0.694.6±0.6 95.5±0.595.5±0.595.5±0.5

(b) ✓ ✓ × ✓ ✓ 91.1±0.9 87.5±1.1 91.3±0.9 93.4±0.8
✓ × × ✓ ✓ 83.2±2.1 81.3±2.0 83.3±1.5 84.9±1.4

(c) ✓ ✓ ✓ × ✓ 91.7±0.7 87.5±0.9 91.9±0.8 92.8±0.6

(d) ✓ ✓ × ✓ × 78.3±3.3 68.8±2.4 78.8±1.9 80.3±2.2

can also be extended for other forecast tasks on sequential medical images. C2F-
LDM still has some limitations. Firstly, C2F-LDM cannot be trained end-to-end
and multi-stage training is necessary for better performance. Secondly, C2F-
LDM may be inability to generalize to unseen data.
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