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Abstract. Histopathology can help clinicians make accurate diagnoses,
determine disease prognosis, and plan appropriate treatment strategies.
As deep learning techniques prove successful in the medical domain, the
primary challenges become limited data availability and concerns about
data sharing and privacy. Federated learning has addressed this challenge
by training models locally and updating parameters on a server. However,
issues, such as domain shift and bias, persist and impact overall perfor-
mance. Dataset distillation presents an alternative approach to overcom-
ing these challenges. It involves creating a small synthetic dataset that
encapsulates essential information, which can be shared without con-
straints. At present, this paradigm is not practicable as current distilla-
tion approaches only generate non human readable representations and
exhibit insufficient performance for downstream learning tasks. We train
a latent diffusion model and construct a new distilled synthetic dataset
with a small number of human readable synthetic images. Selection of
maximally informative synthetic images is done via graph community
analysis of the representation space. We compare downstream classifica-
tion models trained on our synthetic distillation data to models trained
on real data and reach performances suitable for practical application.
Codes are available at https://github.com/ZheLi2020/InfoDist.
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1 Introduction

In histopathology, pathologists examine thin sections of tissues derived from
biopsies. These tissue samples are typically stained to enhance the visibility of
cellular structures. Subsequently, the stained slides undergo microscopic analysis
to identify abnormal changes or patterns that may indicate the presence of a
disease. Histopathology plays a crucial role in understanding various medical
conditions, help clinicians make accurate diagnoses, determine disease prognosis,
and plan appropriate treatment strategies.

Deep learning and computer vision methods have demonstrated success in
the analysis of histopathology images, encompassing tasks such as disease detec-
tion, tumor classification, and cell segmentation. Some approaches use multiple
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instance learning (MIL) [32] or hierarchical approaches [5,12,14]. These achieve
commendable classification performance. Nevertheless, the challenges of data
scarcity and data sharing is hard to tackle due to concerns related to privacy
protection, diverse dataset formats, and legal and regulatory frameworks. Feder-
ated learning has addressed this issue through a distributed approach, where in-
dividuals train their data locally, and model parameters are updated on a central
server. While this method maintains data privacy, it introduces new challenges
such as domain shift and bias.

Some researchers have explored knowledge distillation [1,35,29,36,37] or the
generation of synthetic images [26,34,16] as data enrichment methods to address
the data shortage problem and enhance performance. Concerns about data pri-
vacy still exist because these methods only assist the training and models are
trained on real data as before. In this context, dataset distillation emerges as a
more appropriate solution. It learns from a large real dataset and generating a
small synthetic dataset that maximally encapsulates essential information. Sub-
sequently, downstream tasks are trained on the dataset that solely consists of
synthetic images. Effective dataset distillation would allow sharing of a small
synthetic dataset that can a) guarantee to not contain any privacy concerning
identifiable information, b) be used as a direct representation of the underlying
data distribution characteristics for downstream applications and bias mitiga-
tion, and c) allow resource efficient training and refinement of, e.g., general
foundation models. Leveraging data distillation to work with compact, synthe-
sized images across clinical sites could effectively anonymize the training process
by removing all patient-specific information on the image level.

We would expect that approaches for dataset distillation can achieve compa-
rable performance to those trained on a large real dataset. However, the perfor-
mance achieved by training solely on a small synthetic dataset is sub-optimal.
One reason is the majority of approaches only generate a limited number of
synthetic images, typically around 1 or 10 for each class. Hence, its practical ap-
plicability in the real world is currently limited. Our goal is to extract maximum
information from the original large dataset with real images, and generate a min-
imal synthetic dataset that can achieve comparable performance when training a
task-specific model. To achieve this, we train a class conditional latent diffusion
model and generate 1000 synthetic images for each class. We then utilize the
Infomap algorithm [3] to select 100 images from it in the representation space of
convolutional networks. Afterwards, we train classifiers on this distilled subset
to evaluate the set’s representational power. This approach enables us to achieve
comparable classification accuracy to real images while efficiently reducing stor-
age costs and training efforts simultaneously.

To the best of our knowledge, there are no works that have specifically in-
vestigated dataset distillation for histopathology. Our contribution consists of:

1. We propose an approach to use synthetic images for data sharing, which
mitigates privacy concerns – InfoDist.

2. We explore an efficient method to select images with essential information.
The process involves projecting images to the embedding using a pre-trained
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convolutional network, followed by the utilization of the map equation and
Infomap algorithm [3] to select images with high modular centrality.

3. We design a contrasting learning loss to further improve performance.
4. In our experiments, we report the average results of test accuracy, F1 score,

and AUC score. We demonstrate that competitive performance can be achieved
when training solely on a distilled set of synthetic images.

Related Work. Dataset distillation is initially explored on natural images, such
as CIFAR-10 or ImageNet to reduce the storage and computation cost. Recently,
such frameworks have been applied on gastric X-ray images [18] and a COVID-
19 chest X-ray dataset [19]. There is no work on histopathology images so far.
Most researchers focus on approaches [27,25,13,23,28,15] using the MIL method,
multi-modal data combination [21] or data augmentation [9] for the classification
of whole slide images or segmentation [6].

2 Method

Our idea for InfoDist is outlined in Fig. 1. The overall goal is to select the
most informative subset of images Xs from a set of all images X, so that Xs

will provide enough information to train another downstream classifier, ideally
yielding the same classification performance on an unseen test set Xt as if trained
on the full X. X could not readily be shared with third parties, since this may
be samples from a set of real patient data. Thus we propose to transform X to
a newly generated synthetic set Xg = Fθ(X) with infinite extent and start the
data distillation process from there.

Latent diffusion models recently became a viable option to model Fθ(X)
without too much loss of information about the underlying distribution in X. We
utilize a class conditional latent diffusion model U-ViT [2] to model Xg = Fθ(X).
It’s a backbone latent diffusion model in a U-Net shape, where each block is a
vision transformer [8]. The diffusion model is trained on real data and learns
the data distribution. It can be trained locally once without sharing it publicly.
Then we can generate synthetic images, but these images are different from any
real images, even though they contain some realistic features. Therefore, there is
no personal information in synthetic images. After training on the pathological
dataset, it can generate synthetic images Xg ∈ R3×W×H that are comparable to
real images. Our goal is to capture the input data distribution as comprehensively
as possible. To achieve this, we generate a large number of synthetic images for
Xg and then select a small subset of representative images.

Xg can be further embedded into the embedding space Rn of a classifier if
the size of elements ∈ Xg is computationally prohibitive. The embedding space
Rn is the output of the penultimate layer of a classifier pretrained on all real
images X.

From the embedding space Xg ∈ Rn we construct a weighted graph from the
set Xg = x1, ..., xN with a metric d : X ×X → Rw≥η, where w is the inversed
Euclidean distance and η is a threshold. This leads to a weighted directed graph
Ḡ = (V,E,w), where the nodes V = Xg and the edges E = (xi, xij )|w ≥ η.
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Fig. 1: Overview of our InfoDist approach. (a) We train a latent diffusion model
UViT [2] and generate a synthetic dataset. (b) We extract the image embeddings
by a pre-trained convolutional network or UMAP [22], then use the modified
infomap algorithm to detect communities. We select a small synthetic dataset
in which images have high modular centrality in each community. (c) We train
the classifiers only on the small selected synthetic dataset and apply both cross
entropy loss Lce and contrastive learning loss Lcon in training.

An alternative embedding method is UMAP [22]. We flatten Xg and reduce
the dimension by UMAP which also constructs a graph by Euclidean distance.
In this graph, each node xi connects its top-k neighbors and the edges become
E = (xi, xij )|1 ≤ j ≤ k, 1 ≤ i ≤ N . We also use this approach in our experiments
for comparison.

We hypothesize that Ḡ contains essential information about the relevance
among individual images I ∈ Xg for dataset distillation and their effectiveness
to shape decision boundaries in downstream classifiers. In exploring the nuances
of nodes and the identification of weak boundaries among clusters, we intro-
duce an unsupervised method to unearth samples that encode intricate details,
even within a single class. Here, community detection emerges as an important
factor; specifically, the nodes with the high modular centrality in each commu-
nity could be deemed the most relevant. The scalar score of modular centrality
combines two scores to quantify both the intra-community and inter-community
influence [10]. This allows community detection not merely as a tool for group
identification but as a method of compression and dataset distillation. Via the
Infomap algorithm [3], we can identify those key samples that, despite their lim-
ited number, encapsulate the dataset’s complexity and facilitate the formation



Image Distillation for Safe Data Sharing in Histopathology 5

of robust decision boundaries, thereby enhancing the efficiency and effectiveness
of the distillation process.

Community detection can leverage the Map Equation [24], an unsupervised
method grounded in information theory, which aims to optimize community
identification based on the principle of minimum description length [11]. This
approach seeks to encapsulate the behavior of a random walker within a net-
work in the most concise way, by reducing the expected per-step codelength.
It achieves this by organizing the network into clusters within which the ran-
dom walker is likely to remain for extended periods. The Map Equation method
does not require simulating random walks to achieve its objectives; rather, it
analytically computes the codelength:

L(M) = q↷H(Q) +
m∑
i=1

pi⟳H(P i) (1)

where L(M) is the total codelength for a given partition M of the network into
m clusters, q↷ is the probability of the random walker transitioning between
clusters, H(Q) is the entropy of the module exit probabilities, quantifying the
uncertainty in module exits, pi⟳ is the probability of the random walker staying
within module i, H(P i) is the entropy of the visitation probabilities within
module i, and m is the number of clusters. Algorithm 1, which is a modified
version of InfoMap [3] can then be used to distill nodes that have high modular
centrality from each community uniformly. Here, we generate graphs for each
class separately, so all synthetic images with same class label are nodes in the
graph. We calculate the inverse Euclidean distance and apply softmax operation
as weights of links between nodes. To ensure that higher weight represents a
stronger relation between nodes, we set a threshold η to remove the links with
low weights.
Contrastive Learning Loss. To further the performance of downstream clas-
sifiers that are trained on very limited data like distilled datasets, we propose
the use of a contrastive learning loss [33]. We set two boundaries and process
output probabilities of the convolutional model during training to generate the
boundaries with the assistance of masks defined by the ground truth. Specif-
ically, we slice the output to obtain the probabilities for one class and mask
out the positive and negative samples within the current batch. The mask is
generated based on the ground truth label. If the ground truth corresponds to
the current processing class label, the value is set to 1. Otherwise, it is set to 0.
After applying the mask to probabilities, we obtain the probabilities of samples
associated with the current class label. We assume that there are positive sam-
ples with low probabilities which are easily confused with negative samples. We
set a threshold such that a percentage ρ of the positive samples are predicted
correctly. Thus, we sort the probabilities of positive samples in descending or-
der and set the sample probability at the last position of B × ρ samples as the
positive boundary bp. The remaining B × (1 − ρ) positive samples with lower
probabilities are contributed to the loss calculation as the first term of Eq. 2. The
negative boundary bn for those probabilities with a mask value 0 is calculated by
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Algorithm 1 Our proposed InfoDist algorithm for Community Detection

1: Input: The real images Xk or synthetic images Xk
g with class label k;

2: N , the number of selected images.
3: Initialize each node as its own community C.
4: Initialize empty distillation set Xs.
5: repeat
6: for each node i in the network do
7: for each community C that i’s neighbors belong to do
8: Calculate the change in L(M) if i is moved to C.
9: end for

10: Move node i to the community that results in the greatest decrease in L(M).
11: end for
12: Update the community structure based on node movements.
13: until no further reduction in L(M) is possible
14: Calculate Ni, the number of images that needs to be selected from each community.
15: for each community Ci in the network do
16: Xs ← I ∈ Xk or I ∈ Xk

g nodes that have high modular centrality.
17: end for
18: Apply the algorithm recursively to images in other classes to construct the small

real or synthetic dataset.

subtracting a hyperparameter τ from bp. The probabilities that are higher than
the negative boundary are calculated in the loss as the second term of Eq. 2.

Lc =
Pos∑
i=0

|min((pi − bp), 0)|+
Neg∑
j=0

|max((pj − bn + τ), 0)|, (2)

where Pos denotes the number of positive images for current class label in the
ground truth and Neg denotes the number of the remaining images with other
class labels. pi, pj is the output probability of the synthetic images si, sj after
softmax operation. We compute two boundaries and the contrastive learning
loss for each class separately and calculate the contrastive loss Lb =

∑C
c=0 Lc

Finally, the total loss is a combination with cross entropy L = Lb + Lce.

3 Experiments

Datasets. We evaluate our distillation approach on the public MedMNIST
datasets [31] which comprises MNIST-like datasets featuring standardized biomed-
ical images that consists of a total of 12 datasets for 2D and 6 datasets for
3D. Our method is specifically applied to one of these datasets, PathMNIST,
which includes histopathology images for colon biopsies. This dataset consists
of 107, 180 image samples which are divided into training (89, 996), validation
(10, 004), and test (7, 180) sets. All images are resampled into 28 x 28 (2D) resolu-
tion. The PathMNIST dataset has 9 types of tissues: ADI, adipose tissue; BACK,
background; CRC, colorectal cancer; DEB, debris; HE, hematoxylin–eosin; LYM,
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(a) real images (b) synthetic image 64 (c) synthetic image 256

Fig. 2: The real and synthetic samples at different resolutions.

lymphocytes; MUC, mucus; MUS, smooth muscle; NCT, National Center for
Tumor Diseases; NORM, normal colon mucosa; STR, cancer-associated stroma;
TUM, colorectal adenocarcinoma epithelium [17].
Metrics. We report 3 evaluation metrics, the classification accuracy, the F1
score, and the AUC on the test set of PathMNIST.
Implementation Details. In the embedding process, images are projected into
features with dimensions of either 2048 or 8192, corresponding to resolutions of
64 × 64 or 256 × 256, using a pre-trained ConvNet or ResNet18. The UMAP
projects the images into features with dimension 10, with a specified number
of neighbors set to 10 and a minimum distance parameter of 0.05. In Infomap,
we can either utilize the graph generated by UMAP or calculate the distance
matrix using the Euclidean distance where the weight threshold η is set to 0.001
or 0.004. For computation cost, training ConvNet model for 5 times needs about
20 minutes and ResNet18 needs about 40 minutes on a A100 GPU.
Synthetic Images. We train a class conditional latent diffusion model U-ViT [2]
on the training set of the PathMNIST dataset which consists of 89, 996 images.
We resize input images from resolutions 28×28 to 64×64 or 256×256 respectively
before training. After training the U-ViT-L/4 on images with resolution 64× 64
and U-ViT-L/2 on 256×256 respectively, we generate 1000 synthetic images for
each class, resulting in a total of 9000 synthetic images for each size. Fig. 2(a)
shows the samples of real images. Fig. 2(b) exhibits samples of synthetic images
generated at a resolution of 64×64, while Fig. 2(c) showcases samples of synthetic
images generated at a resolution of 256× 256.
Distilled data. To create a distilled dataset, we select 100 images for each class
from the generated synthetic dataset with our InfoDist approach. Therefore, the
condensed synthetic dataset comprises 900 images for training a downstream
classifier, considering there are 9 classes in the PathMNIST dataset. We employ
two classifiers: ConvNet and ResNet18. The reported results are the average of 5
runs on the entire real test set of the PathMNIST dataset and the corresponding
standard deviation. In each run, the selected training images are updated.

Table 1 shows our results of InfoDist on a small distilled dataset compared
to the state-of-the-art. We train two classifiers on the whole real training set and
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Table 1: Results compared to state-of-the-art. The top part shows the upper
bound for the performance when the private training data is available, following
results of distilled real dataset. The bottom part shows the results on all synthetic
images or distilled synthetic images. Our performance are better than the two
baselines and comparable to results of distilled real dataset in top part.

ConvNet ResNet18
Real res. #img/class ACC F1 AUC ACC F1 AUC

up
p
er

b
ou

nd [30,31,7,20] 642 ∼ 10k - - - 85.28±5.99 - 97.33±1.68

Reproduced 642 ∼ 10k 91.44±0.20 88.36±0.24 99.23±0.05 91.25±0.71 87.95±0.97 99.00±0.24

[30,31] 2242 ∼ 10k - - - 88.45±3.47 - 98.35±0.78

Reproduced 2562 ∼ 10k 92.02±0.48 88.76±0.67 99.25±0.06 90.96±0.35 87.27±0.46 98.92±0.09

real distilled
InfoDist 642 100 77.34±0.42 69.45±0.51 94.98±0.23 78.50±0.62 71.77±0.21 96.47±0.57

InfoDist 2562 100 81.17±0.53 73.81±0.64 96.73±0.24 83.90±0.50 77.47±0.77 97.77±0.11

Synthetic
Reproduced 642 1k 79.87±0.86 73.59±0.90 96.74±0.22 86.18±0.46 80.80±0.80 98.15±0.12

syn distilled

re
su

lt
s

GLaD [4] 642 1 40.49±1.26 28.46±1.55 74.45±0.74 46.68±1.16 34.63±0.87 75.97±0.41

Random 642 100 61.52±0.60 54.29±0.65 89.31±0.94 72.82±2.13 64.74±3.10 94.33±1.03

InfoDist 642 100 69.79±1.28 63.01±1.10 91.15±0.35 77.48±1.52 70.80±1.03 96.84±0.33

GLaD [4] 2562 1 38.81±0.91 29.44±0.78 70.26±0.60 45.70±2.59 35.59±1.43 82.24±0.55

Random 2562 100 58.29±2.58 50.95±2.29 89.97±0.97 71.82±3.21 63.88±3.14 94.99±0.86

InfoDist 2562 100 65.45±1.40 57.47±1.40 91.45±0.43 77.79±1.18 72.53±1.53 94.59±0.37

indicate results as Reproduced. We also apply InfoDist on the real dataset and
select a small dataset with 900 real images. We report the results in Real/real
distilled/InfoDist. In the bottom part, Synthetic, we train two classifiers on all
synthetic images and report results in the rows Reproduced. For the distilled
synthetic dataset with 900 images, we compare our approach with two baselines,
GLAD [4] and random image selection. With resolution 64 × 64, a ConvNet
achieves 69.79 test accuracy which is comparable to the performance 77.34 of
the distilled real dataset. A ResNet18 can achieve better performance 77.48
in test accuracy which is on par to the 78.50 of distilled real images. At a
resolution of 256× 256, we achieve competitive results as well. A ResNet18 can
achieve performance 77.79 in test accuracy compared to the 83.90 of distilled
real images.
Ablation Study. We provide an extensive ablation study including different
embeddings (ConvNet, RestNet, UMAP) with different clustering methods in
several configurations for the node selection in the Appendix. For Table 1 we
fixed the Infomap node selection metric to modular centrality. In the Appendix
we also explore the effect of using enter flow or exit flow as alternatives. We
also conducted an ablation study on hard code hyperparameters and selected
the best combination to report the results.

4 Conclusion

In this paper, our goal is to make dataset distillation applicable in the real world
because its various advantages. In our setting, privacy information is removed
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and data security concerns are alleviated. We initiate the process by training
a latent diffusion model and generating a synthetic dataset. Subsequently, we
employ cluster methods to select a smaller dataset. Classifiers are then trained
on this reduced synthetic dataset, and we report the test accuracy, F1 score, and
AUC score. The incorporation of a contrastive learning loss contributes to the
enhancement of performance. We also select an equivalent number of real images
for comparison. Our results on a distilled synthetic dataset are comparable with
those on a small real dataset. Furthermore, our AUC score is competitive with
that of the entire real dataset.

Acknowledgments. This work was supported by the State of Bavaria, the High-Tech
Agenda (HTA) Bavaria and HPC resources provided by the Erlangen National High
Performance Computing Center (NHR@FAU) of the Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU) under the NHR project b180dc. NHR@FAU hardware is
partially funded by the German Research Foundation (DFG) - 440719683. Support
was also received from the ERC - project MIA-NORMAL 101083647 and DFG KA
5801/2-1, INST 90/1351-1.

Disclosure of Interests. The authors have no competing interests for this work.

References

1. Azadi, P., Suderman, J., Nakhli, R., Rich, K., Asadi, M., Kung, S., Oo, H., Keyes,
M., Farahani, H., MacAulay, C., et al.: All-in: A local global graph-based distil-
lation model for representation learning of gigapixel histopathology images with
application in cancer risk assessment. In: MICCAI’23. pp. 765–775. Springer (2023)

2. Bao, F., Nie, S., Xue, K., Cao, Y., Li, C., Su, H., Zhu, J.: All are worth words: A
vit backbone for diffusion models. In: CVPR’23. pp. 22669–22679 (2023)

3. Blöcker, C., Tan, C., Scholtes, I.: The map equation goes neural. preprint
arXiv:2310.01144 (2023)

4. Cazenavette, G., Wang, T., Torralba, A., Efros, A.A., Zhu, J.Y.: Generalizing
dataset distillation via deep generative prior. In: CVPR’23. pp. 3739–3748 (2023)

5. Chen, R.J., Chen, C., Li, Y., Chen, T.Y., Trister, A.D., Krishnan, R.G., Mahmood,
F.: Scaling vision transformers to gigapixel images via hierarchical self-supervised
learning. In: CVPR’22. pp. 16144–16155 (2022)

6. Deng, R., Li, Y., Li, P., Wang, J., Remedios, L.W., Agzamkhodjaev, S., Asad, Z.,
Liu, Q., Cui, C., Wang, Y., et al.: Democratizing pathological image segmentation
with lay annotators via molecular-empowered learning. In: MICCAI’23. pp. 497–
507. Springer (2023)

7. Derakhshani, M.M., Najdenkoska, I., van Sonsbeek, T., Zhen, X., Mahapatra, D.,
Worring, M., Snoek, C.G.: Lifelonger: A benchmark for continual disease classifi-
cation. In: MICCAI’22. pp. 314–324. Springer (2022)

8. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Un-
terthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., et al.: An im-
age is worth 16x16 words: Transformers for image recognition at scale. preprint
arXiv:2010.11929 (2020)



10 Zhe Li and Bernhard Kainz

9. Gadermayr, M., Koller, L., Tschuchnig, M., Stangassinger, L.M., Kreutzer, C.,
Couillard-Despres, S., Oostingh, G.J., Hittmair, A.: Mixup-mil: Novel data aug-
mentation for multiple instance learning and a study on thyroid cancer diagnosis.
In: MICCAI’23. pp. 477–486. Springer (2023)

10. Ghalmane, Z., El Hassouni, M., Cherifi, C., Cherifi, H.: Centrality in modular
networks. epj data sci 8 (1): 15 (2019)

11. Grünwald, P.D., Myung, I.J., Pitt, M.A.: Advances in minimum description length:
Theory and applications. MIT press (2005)

12. Guan, Y., Zhang, J., Tian, K., Yang, S., Dong, P., Xiang, J., Yang, W., Huang,
J., Zhang, Y., Han, X.: Node-aligned graph convolutional network for whole-slide
image representation and classification. In: CVPR’22. pp. 18813–18823 (2022)

13. Huang, Y., Zhao, W., Wang, S., Fu, Y., Jiang, Y., Yu, L.: Conslide: Asynchronous
hierarchical interaction transformer with breakup-reorganize rehearsal for contin-
ual whole slide image analysis. In: ICCV’23. pp. 21349–21360 (2023)

14. Jiang, C., Hou, X., Kondepudi, A., Chowdury, A., Freudiger, C.W., Orringer, D.A.,
Lee, H., Hollon, T.C.: Hierarchical discriminative learning improves visual repre-
sentations of biomedical microscopy. In: CVPR’23. pp. 19798–19808 (2023)

15. Jin, T., Xie, X., Wan, R., Li, Q., Wang, Y.: Gene-induced multimodal pre-training
for image-omic classification. In: MICCAI’23. pp. 508–517. Springer (2023)

16. Kang, M., Chikontwe, P., Kim, S., Jin, K.H., Adeli, E., Pohl, K.M., Park, S.H.:
One-shot federated learning on medical data using knowledge distillation with
image synthesis and client model adaptation. In: MICCAI’23. pp. 521–531. Springer
(2023)

17. Kather, J.N., Krisam, J., Charoentong, P., Luedde, T., Herpel, E., Weis, C.A.,
Gaiser, T., Marx, A., Valous, N.A., Ferber, D., et al.: Predicting survival from
colorectal cancer histology slides using deep learning: A retrospective multicenter
study. PLoS medicine 16(1), e1002730 (2019)

18. Li, G., Togo, R., Ogawa, T., Haseyama, M.: Compressed gastric image generation
based on soft-label dataset distillation for medical data sharing. Computer Methods
and Programs in Biomedicine 227, 107189 (2022)

19. Li, G., Togo, R., Ogawa, T., Haseyama, M.: Dataset distillation for medical dataset
sharing. preprint arXiv:2209.14603 (2022)

20. Liu, J., Li, Y., Cao, G., Liu, Y., Cao, W.: Feature pyramid vision transformer for
medmnist classification decathlon. In: IJCNN’22. pp. 1–8. IEEE (2022)

21. Lu, M., Wang, T., Xia, Y.: Multi-modal pathological pre-training via masked au-
toencoders for breast cancer diagnosis. In: MICCAI’23. pp. 457–466 (2023)

22. McInnes, L., Healy, J., Melville, J.: Umap: Uniform manifold approximation and
projection for dimension reduction. preprint arXiv:1802.03426 (2018)

23. Qu, L., Yang, Z., Duan, M., Ma, Y., Wang, S., Wang, M., Song, Z.: Boosting
whole slide image classification from the perspectives of distribution, correlation
and magnification. In: ICCV’23. pp. 21463–21473 (2023)

24. Rosvall, M., Axelsson, D., Bergstrom, C.T.: The map equation. The European
Physical Journal Special Topics 178(1), 13–23 (2009)

25. Shao, Z., Wang, Y., Chen, Y., Bian, H., Liu, S., Wang, H., Zhang, Y.: Lnpl-mil:
Learning from noisy pseudo labels for promoting multiple instance learning in
whole slide image. In: ICCV’23. pp. 21495–21505 (2023)

26. Shrivastava, A., Fletcher, P.T.: Nasdm: Nuclei-aware semantic histopathology im-
age generation using diffusion models. MICCAI’23 (2023)

27. Tang, W., Huang, S., Zhang, X., Zhou, F., Zhang, Y., Liu, B.: Multiple instance
learning framework with masked hard instance mining for whole slide image clas-
sification. In: ICCV’23. pp. 4078–4087 (2023)



Image Distillation for Safe Data Sharing in Histopathology 11

28. Wang, H., Luo, L., Wang, F., Tong, R., Chen, Y.W., Hu, H., Lin, L., Chen, H.:
Iteratively coupled multiple instance learning from instance to bag classifier for
whole slide image classification pp. 467–476 (2023)

29. Wang, X., Li, Z., Luo, X., Wan, J., Zhu, J., Yang, Z., Yang, M., Xu, C.: Black-box
domain adaptative cell segmentation via multi-source distillation. In: MICCAI’23.
pp. 749–758. Springer (2023)

30. Yang, J., Shi, R., Ni, B.: Medmnist classification decathlon: A lightweight automl
benchmark for medical image analysis. In: ISBI’21. pp. 191–195. IEEE (2021)

31. Yang, J., Shi, R., Wei, D., Liu, Z., Zhao, L., Ke, B., Pfister, H., Ni, B.: Medmnist v2-
a large-scale lightweight benchmark for 2d and 3d biomedical image classification.
Scientific Data 10(1), 41 (2023)

32. Yang, J., Chen, H., Zhao, Y., Yang, F., Zhang, Y., He, L., Yao, J.: Remix: A general
and efficient framework for multiple instance learning based whole slide image clas-
sification. In: MICCAI’22. pp. 35–45. Springer Nature Switzerland, Cham (2022)

33. Yao, X., Li, R., Zhang, J., Sun, J., Zhang, C.: Explicit boundary guided semi-
push-pull contrastive learning for supervised anomaly detection. In: CVPR’23. pp.
24490–24499 (2023)

34. Ye, J., Ni, H., Jin, P., Huang, S.X., Xue, Y.: Synthetic augmentation with large-
scale unconditional pre-training. In: MICCAI’23. pp. 754–764. Springer (2023)

35. Yu, Z., Lin, T., Xu, Y.: SLPD: Slide-level prototypical distillation for WSIs. In:
Greenspan, H., Madabhushi, A., Mousavi, P., Salcudean, S., Duncan, J., Syeda-
Mahmood, T., Taylor, R. (eds.) MICCAI’23. pp. 259–269. Springer Nature Switzer-
land, Cham (2023)

36. Yu, Z., Lin, T., Xu, Y.: Slpd: slide-level prototypical distillation for wsis. In: MIC-
CAI’23. pp. 259–269. Springer (2023)

37. Zhong, L., Liao, X., Zhang, S., Wang, G.: Semi-supervised pathological image
segmentation via cross distillation of multiple attentions. MICCAI’23 (2023)


	Image Distillation for Safe Data Sharing in Histopathology

