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Abstract. Semi-supervised medical image segmentation, crucial for med-
ical research, enhances model generalization using unlabeled data with
minimal labeled data. Current methods face edge uncertainty and strug-
gle to learn specific shapes from pixel classification alone. To address
these issues, we proposed two-stage knowledge distillation approach em-
ploys a teacher model to distill information from labeled data, enhancing
the student model with unlabeled data. In the first stage, we use true
labels to augment data and sharpen target edges to make teacher pre-
dictions more confident. In the second stage, we freeze the teacher model
parameters to generate pseudo labels for unlabeled data and guide the
student model to learn. By feeding the original background image to
the teacher and the enhanced image to the student, The student model
learns the information hidden under the mantle and the overall shape of
hidden information of the segmented target. Experimental results on the
Left Atrium dataset surpass existing methods. Our Overlay Mantle-Free
training method enables segmentation based on learned shape informa-
tion even in data loss scenarios, exhibiting improved edge segmentation
accuracy.The code is available at https://github.com/vigilliu/OMF.

Keywords: Semi-supervised learning · Segmentation · Knowledge dis-
tillation · Data augmentation.

1 Introduction

In medical image segmentation, the substantial cost of manual annotation has
led to the adoption of semi-supervised learning [12,10,20,1,2,3,7,6,18,15,8], which
utilizes a small amount of labeled data alongside unlabeled data to improve
generalization, significantly advancing medical research. The magnetic resonance
images(MRI) segmentation like Left Atrium (LA) [17] serves as a representative
task for semi-supervised medical image segmentation [18,3,7,2,6,15,8] .

Several recent semi-supervised medical image methods have emerged. For in-
stance, UA-MT [18] primarily employs Monte Carlo dropout [5] and exponential
moving average (EMA) [13] to assess uncertainty in predictions of the teacher
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model, as illustrated in (a) of Figure 1, and applies uncertainty mask to en-
hance learning reliability. DTC [7] utilizes a dual-task deep network to jointly
predict pixel-level segmentation maps of targets and geometrically perceive level
set representations. SASSnet [6] introduces adversarial loss between predictions
of sdm for labeled and unlabeled data, enabling more effective capture of shape-
aware features. MC-Net [16] consists of an encoder and two slightly different
decoders, implementing a cyclic pseudo-labeling scheme. BCP [2] adopts a bi-
directional cut-and-paste strategy similar to CutMix [19], as shown in (b) of
Figure 1’s top row, to reduce distribution discrepancy between labeled and un-
labeled data. Inspired by UCC [4] and ClassMix [11], another data augmentation
method combines pseudo-labeling [1] with consistency regularization. It applies
the edge-cropped copy-and-paste technique across different images and classes in
multi-class segmentation tasks to sharpen the edges of each class, thereby alle-
viating label contamination issues. Drawing from these principles, we utilize the
concept to sharpen the segmentation targets of left atrium against other tissues,
treating it as a binary classification problem based on the most certain edges of
the true labels. This approach aims to mitigate edge uncertainty issues.
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Fig. 1. Illustration of the problem we solve and the idea of the approach.(a) The
first row displays an MRI example, while the second row shows the uncertainty map
predicted via UA-MT. (b) The top row in showcases BCP’s bidirectional copy-paste
method, and the bottom row illustrates our data augmentation method and ground
truth. (c) Our approach aims to eliminate data augmentation’s mantle and predict
the underlying information of lower layers to learn the overall shape of segmentation
targets.

In semi-supervised learning, it is necessary first to learn generalizable knowl-
edge from labeled data. The edges of segmentation targets pose a significant
challenge due to high uncertainty, as depicted in Figure 1(a). While uncertainty
masks are utilized in UA-MT [18] to address this issue, more confident predic-
tions are required at the segmentation edges.Perceiving the shape of segmen-
tation targets plays a crucial role in the accuracy of segmentation tasks [6].
However, previous methods have typically classified input images pixel by pixel
without imposing constraints on the overall segmentation shape.This is evident
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when input data are randomly occluded, causing the network to refrain from pre-
dicting the occluded parts, which stems from a lack of perception of the overall
shape of segmentation targets.

Therefore, in this work, we propose the Overlay Left Atrium Mantle-Free for
Semi-Supervised Medical Image Segmentation (OMF) method, which consists of
two stages, corresponding to labeled and unlabeled data, respectively. In the first
stage, labeled data are cropped and concatenated based on their true labels for
data augmentation, pre-training a teacher model. This data augmentation based
on true labels enhances the network’s confidence in predictions. In the second
stage, the parameters of the pre-trained teacher model are fixed, and the student
model is initialized with these parameters. The teacher model is then used to
generate pseudo-labels [1,14] for unlabeled data, which are further augmented
based on these pseudo-labels. Notably, during the knowledge distillation process,
background images are fed into the teacher model while mixup images are fed
into the student model. Consistency loss is employed to train the student model,
enabling it to remove the mantle during training and learn hidden information
obscured by the mantle, as depicted in Figure 1(c), as well as the overall shape of
segmentation targets. We compare our method with six recent approaches on two
semi-supervised learning ratios to demonstrate its effectiveness. Additionally, we
conduct ablation experiments to verify the effectiveness of data augmentation
and differentiated input knowledge distillation, revealing the network’s ability
to accurately segment data with varying degrees of occlusion.

The main innovations of this paper are summarized as follows:(1)We propose
a novel data augmentation method that crops and concatenates images along
segmentation edges based on labels, boosting confidence in edge predictions and
addressing uncertainty.(2)A method was developed to design differentiated in-
puts and fix the parameters of the teacher model during knowledge distillation,
thereby allowing the student to perceive the underlying shape of segmentation
targets by removing the mantle.(3)Our network achieves state-of-the-art per-
formance in semi-supervised segmentation tasks on the LA database. Moreover,
owing to its unique training approach, our method consistently outperforms oth-
ers in accurately segmenting inputs with various degrees of missing data during
testing.

2 Method

2.1 Model Architecture

As shown in Figure 2, we propose a semi-supervised learning method for medical
image segmentation on the LA dataset, based on label-edge-based data augmen-
tation and a two-stage knowledge distillation approach corresponding to labeled
and unlabeled data, respectively. We use V-net [9] as the backbone network.Stage
one and stage two correspond to labeled and unlabeled data. In stage one, we use
the true labels of labeled data to extract foreground from the original images,
forming a mantle, which is then pasted onto another background image for data
augmentation. The training labels for the augmented teacher model use the true
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labels of the foreground and background images multiplied together. In stage
two, we fix the parameters of the teacher model and load it onto the student
model. The pseudo labels predicted by the teacher model for unlabeled data are
used for data augmentation of foreground and background images. However, dur-
ing the subsequent knowledge distillation process, we use complete background
images as input to the teacher model and augmented images as input to the stu-
dent model for consistency loss. During training, the student model gradually
tends to predict the target covered by the mantle and learns the overall shape
of the target, enabling the learned model to predict segmentation targets based
on the overall shape even in the absence of image content.

～

Labeled Data Augmentation
Image a Image bLabel a Label b

Mix Image Mix Label

～

Unlabeled Data Augmentation
Unlabeled a Unlabeled b

P
se

ud
o 

La
be

l a

P
se

ud
o

La
be

l b

Mix Image Pseudo 
Mix Label

Output
Loss

Ground truth
Input

Teacher Model

Stage 1

Loss

Stage 2

～ Addition

Teacher Output

Student Output

Unlabeled b

Mix Image

Element-wise
Negation

Element-wise
Multiplication Fixed parametersTrainable parameters

Student Model

Fig. 2. Overview of our Overlay Mantle-Free method.

2.2 Pre-train via Overlay Left Atrium Data Augmentation

Inspired by previous work, we pre-train a teacher model using only labeled data
in the first stage to generate pseudo-labels for subsequent use. Previous studies
have shown that uncertainty mainly occurs at the edges of segmentation targets.
Inspired by classmix, we segment the images based on the true labels of the
labeled data to create a mantle and overlay it onto another image (background
image) for data augmentation. This enables the network to make more confident
predictions at the edges, thus mitigating the impact of uncertainty at the edges
on training.
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DL represents the labeled set represents the unlabeled set, Xi represents
the labeled elements in the set, and i ranges from 1 to N , DU represents the
unlabeled set, Xp represents the elements in the set, and p ranges from N + 1
to N +M . Xi ∈ RH×W×D is the input volumes and Yi ∈ {0, 1}H×W×D is the
ground-truth annotations.

Xl
i, Xl

j∈ DL, i ̸= j, DL = {(Xl
i,Y

l
i)}Ni=1. XS1mix

i is the mixup image after our
data augmentation. The i-th image is taken as the foreground image. The mantle
is obtained by multiplying the inverse of its label Yl

i with the original image Xl
i.

Additionally, the j-th image is taken as the background, and it is obtained by
multiplying it with Yl

i. The resulting mixture is denoted as XS1mix
i , given by

the sum of the mantle and background images.The data augmentation process
for labeled data can be expressed as:

XS1mix
i = Xl

j ⊙Yl
i +Xl

i ⊙ (1−Yl
i), YS1mix

i = Yl
i ⊙Yl

j (1)

For the training labels of data augmentation, we multiply the labels of image i
and image j to obtain YS1mix

i , which serves as the label for the mixup image
XS1mix

i .
The total data used in stage 1 consists of DS1 = (XS1mix

i ,YS1mix
i )

N

i=1 ∪
DL.The data used here are discussed in table 2 in the ablation studies. The
segmentation training loss of pre-training in the first stage is Lseg:

Lseg =
1

N

(
N∑
i=1

LCE(fseg({Xi,X
S1mix
i }; θ), {Yi,Y

S1mix
i })

+

N∑
i=1

Ldice(fseg({Xi,X
S1mix
i }; θ), {Yi,Y

S1mix
i })

) (2)

LCE denotes the cross-entropy loss, while Ldice signifies the Dice loss.The pre-
diction result of the network for the input xi and XS1mix

i under the θ parameter
is fseg({Xi,X

S1mix
i }; θ).

2.3 Mantle-Free Knowledge Distillation

For the unlabeled data DU = {Xu
p}N+M

p=N+1 to be used in the second stage, we will
utilize the pre-trained parameters θ from the first stage to generate pseudo-labels
Ỹp for Xu

p :

Ỹp = fseg(X
u
p ; θ) (3)

Xu
p , Xu

q∈ DU , p ̸= q.Similar to the labeled data, data augmentation operations
will be performed on the unlabeled data.

XS2mix
p = Xu

q ⊙ Ỹu
p +Xu

p ⊙ (1− Ỹu
p ) (4)

XS2mix
p represent the mixup images after data augmentation.
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In contrast to previous approaches where we discontinued the use of EMA
between the teacher and student models, we instead initialize the pre-trained
parameters separately for the teacher and student models. During the knowl-
edge distillation process, we freeze the parameters of the teacher model θ and
only train the student model ζ. Throughout the distillation process, we feed the
background original images Xu

q into the teacher model and the mixup images
XS2mix

p into the student. LMSE is mean squared error loss.

min
ζ

N+M∑
p=N+1

LMSE(fseg(X
S2mix
p ; ζ), fseg(X

u
q ; θ)) (5)

3 Experiments and Results

Implementation Details and Evaluation Metrics In our study, the seg-
mentation backbone network employed is V-net. Following [18],we divide them
into 80 scans for training and 20 scans for validation,Our OMF utilizes the SGD
optimizer, the learning rate (lr) initialization was set to 0.1 with a fixed seed
on an NVIDIA 3090 GPU, and decayed by 64% every 2.5k iterations. To ensure
uniformity in training data size, random patches of size 112 × 112 × 80 were
cropped during training as representatives. Both stage 1 and stage 2 training
iterations were set to 15k.

During the testing phase, Our evaluation utilizes commonly employed metrics
such as the Dice coefficient (Dice), Jaccard Index (Jaccard), 95% Hausdorff
Distance (95HD) and Average Symmetric Surface Distance (ASD) to measure
performance.we employ non-maximum suppression (NMS) as a post-processing
step to eliminate isolated extraneous regions.

Compare with Sate-of-the-Art Methods. In the 80 training scans, we re-
spectively utilize 10% and 20% (i.e., 8 and 16) of the scans as labeled data,
with the remaining 72 and 64 scans serving as unlabeled data. Table 1 presents
the segmentation performance of V-Net trained solely on labeled data (first two
rows) and our semi-supervised approach (OMF) along with other SOTA methods
on the testing dataset. Our approach outperforms others, achieving an average
Dice of 88.14% and Jaccard of 79.10% (10%), and an average Dice of 88.59%
and Jaccard of 79.76% (20%) when using only labeled training data (refer to
Table 2). Leveraging unlabeled data, our semi-supervised framework further en-
hances segmentation performance, with Jaccard increasing to 90.23% and Dice
to 82.34% (10%), and Jaccard increasing to 90.30% and Dice to 82.43% (20%).

Due to special training methods in the second stage, the trained student
model possesses perceptual awareness of the overall shape of the segmentation
targets. It can still make segmentation predictions based on the inertia of the
shape even in the absence of missing parts of the image. We randomly mask
square regions of varying proportions in the test images and to obtain segmen-
tation accuracy as shown in Figure 3. By observing the predicted segmentation
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Table 1. Comparison between our method and various methods on the LA dataset.

Method #Scans used Metrics
Labeled Unlabeled Dice[%]↑ Jaccard[%]↑ 95HD[voxel]↓ ASD[voxel]↓

V-Net 8(10%) 0 82.74 71.72 13.35 3.26
V-Net 16(20%) 0 86.03 76.06 14.26 3.51
V-Net 80(All) 0 91.47 84.36 5.48 1.51

UA-MT [18] 8 72 87.79 78.39 8.68 2.12
SASSNet [6] 8 72 87.54 78.05 9.84 2.59

DTC [7] 8 72 87.51 78.17 8.23 2.36
SS-Net [15] 8 72 88.55 79.62 7.49 1.90

BCP [2] 8 72 89.62 81.31 6.81 1.76
OMF(Ours) 8 72 90.23 82.34 5.95 1.63
UA-MT [18] 16 64 88.88 80.21 7.32 2.26
SASSNet [6] 16 64 89.42 80.98 7.32 2.10

DTC [7] 16 64 89.42 80.98 7.32 2.10
SS-Net [15] 16 64 89.57 81.25 6.99 1.77

BCP [2] 16 64 88.69 79.96 8.46 2.09
OMF(Ours) 16 64 90.30 82.43 6.52 1.65

images, we find that even in the absence of parts of the image, we can still make
accurate predictions, whereas other methods fail to predict missing parts. As the
masking proportion continues to decrease, our method consistently outperforms
others, suggesting that our method may outperform other methods at the edges
of the predicted targets.

Table 2. Ablation studies of our OMF method on the LA dataset.

Method #Scans used Metrics
Labeled Unlabeled Dice[%]↑ Jaccard[%]↑ 95HD[voxel]↓ ASD[voxel]↓

V-Net 8 0 82.74 71.72 13.35 3.26
S1 8 0 87.09 77.48 11.47 2.64

S1+orgloss 8 0 88.14 79.10 10.50 2.31
S1+S2 8 72 89.98 81.90 6.97 1.58

S1+orgloss+S2 8 72 90.23 82.34 5.95 1.63
V-Net 16 0 86.03 76.06 14.26 3.51

S1 16 0 88.07 79.37 8.50 1.96
S1+orgloss 16 0 88.59 79.76 9.63 2.24

S1+S2 16 64 89.60 81.30 6.78 1.97
S1+orgloss+S2 16 64 90.30 82.43 6.52 1.65

Ablation Studies. In the ablation experiments, as shown in Table 2, we val-
idated the effectiveness of our data augmentation methods and the knowledge
distillation approach using differentiated inputs. The notation "S1" represents
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Fig. 3. Comparison of other methods under different missing proportions.

only the mixup images generated from our Overlay augmentation methods using
labeled data are utilized in the process without using the original input images.
Notably, "S1" in Table 2 shows that V-net using 10% labeled data with Over-
lay data augmentation methods achieves a 4.35% Dice improvement compared
to using original images and labels (first row in Table 2), and 1.06% greater
improvement than the regular method even with 20% labeled data (Vnet has
a dice of 86.03 for the case of 16 labeled and 0 unlabeled). The term "orgloss"
denotes the incorporation of original images in training. In stage 2 (S2), we intro-
duced unlabeled data and the student model obtained through the differentiated
input-based Mantle-Free knowledge distillation approach achieved state-of-the-
art results. Additionally, we observed that incorporating the original image loss
(orgloss) in stage 1 to enhance the accuracy of pre-trained models benefited the
segmentation performance of the student model in stage 2.

4 Conclusion.

In this paper, we introduce a novel Overlay data augmentation method and
integrate it into semi-supervised segmentation with Mantle-Free knowledge dis-
tillation, specifically targeting the Left Atrium task. By employing knowledge
distillation with a fixed teacher model and a student model, we harness consis-
tency loss and differentiated input strategies. This enables the student model
to enhance its perception of segmentation targets’ underlying shapes. Overall,
our contribution lies in advancing semi-supervised medical image segmentation
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methodologies, providing promising avenues for continued exploration and ap-
plication in clinical settings.
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