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Abstract. Interpretability is a key requirement for the use of machine
learning models in high-stakes applications, including medical diagno-
sis. Explaining black-box models mostly relies on post-hoc methods that
do not faithfully reflect the model’s behavior. As a remedy, prototype-
based networks have been proposed, but their interpretability is limited
as they have been shown to provide coarse, unreliable, and imprecise ex-
planations. In this work, we introduce Proto-BagNets6, an interpretable-
by-design prototype-based model that combines the advantages of bag-
of-local feature models and prototype learning to provide meaningful,
coherent, and relevant prototypical parts needed for accurate and in-
terpretable image classification tasks. We evaluated the Proto-BagNet
for drusen detection on publicly available retinal OCT data. The Proto-
BagNet performed comparably to the state-of-the-art interpretable and
non-interpretable models while providing faithful, accurate, and clini-
cally meaningful local and global explanations.

Keywords: Interpretability-by-design · Optical Coherence Tomography
· Part-prototype networks

1 Introduction

For adopting deep learning models in safety-critical applications such as med-
ical diagnosis, it is crucial that users can understand why a model produced
a specific output [16]. This form of interpretability is usually obtained either
through post-hoc explanations of black-box models [20] or through architec-
tural design [4,13]. Post-hoc methods [17,20] interpret an approximation of the

6 Code available at https://github.com/kdjoumessi/Proto-BagNets

https://github.com/kdjoumessi/Proto-BagNets
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true decision mechanism [11] through saliency maps. These highlight the most
discriminating regions in the input, but often provide inaccurate and unfaith-
ful explanations [1, 16]. To remedy this, several approaches have been proposed
with structurally built-in interpretability, such as bag-of-local-features models
(BagNets) [3], concept-based models [15], and prototype-based models [4].

The BagNet [3] is an implicitly patch-based interpretable-by-design model
with a small receptive field, where predictions solely rely on local evidence.
Its recent modification [13] provides sparse and fine-grained local class acti-
vation maps, but does not allow humans to gain a global understanding of the
model’s decision. Concept-based models [15] follow a case-based reasoning pro-
cess where high-level representations of the data (concepts) are learned and used
to classify new images. Prototype-based networks [4] can be seen as a special
case of concept-based models, in which learned concepts are replaced by the
representative training image parts (prototypes) to improve interpretability. In
these models, similarities to the learned prototypes are used to classify new ex-
amples. Explanations can be obtained during inference by highlighting, for a
query image, its prototypical parts most similar to each learned prototype, thus
providing both local explanations thanks to the similarity map and global ex-
planations through the visualization of the learned prototypes. ProtoPNet [4],
the first prototype-based network, has gained considerable attention due to its
easy-to-understand architecture and high-level reasoning process close to that of
humans in solving complex tasks. Although numerous variants have been pro-
posed to improve its performance and interpretability [2, 7, 10, 14], applications
in medical imaging remain relatively limited. This may in part be due to the fact
that the interpretability of prototype-based models is more limited than appears
at first glance, as it has been shown that they do not actually provide faithful
explanations [7, 19].

We propose Proto-BagNet, an interpretable-by-design prototype-based model
that combines the local and fine-grained interpretability of BagNet with the
global interpretability of prototype learning. We integrated recent advances in
training prototype-based models and proposed an additional prototype diversity
constraint. We evaluated our model for detecting drusen lesions on Optical Co-
herence Tomography (OCT) images and showed that the Proto-BagNet preserves
high predictive performance while providing faithful, clinically meaningful, and
precise explanations. Our model explanations accurately localized drusen both
in the learned prototypes and query test images.

2 Developing a faithful prototype-based network

2.1 Baseline ProtoPNet model

We built on the ProtoPNet [4] as a baseline, which consists of three main compo-
nents: a backbone feature extractor f , a prototype layer gp, and a classification
layer h. Given an input image X ∈ RH×W×C (with height H, width W , and
number of channels C), the backbone first extracts a meaningful feature repre-
sentation Z = f(X) ∈ RM×N×D. The prototype layer gp consists of b = m × c
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Fig. 1. Architecture of the Proto-BagNet. (a) Example OCT B-scan image. The red
patch illustrates the small receptive field of (b) the BagNet backbone. (c) Feature map
and (d) Prototype layer with m prototypes per class. (e) Resulting similarity maps
from each prototype to the input. (f) The soft aggregation layer aggregates the average
top-k scores from each similarity map into their allocated categories for classification.

learnable prototypes P = {pi
j ∈ RHP×WP×D}mj=1 (typically HP = WP = 1)

where m denotes the number of prototypes per class, c the number of classes,
and pi

j the j-th prototype of class i. For each prototype pi
j , the prototype

layer computes a similarity map Mx
pi

j
= Sim(Z,pi

j) ∈ RM×N . The similarity

score between a prototype pi
j and the feature vector z(h,w) ∈ Z is defined as

s
(h,w)
i,j = log

(
(dh,wi,j +1)/(dh,wi,j + ϵ)

)
, where dh,wi,j = ∥pi

j − z(h,w)∥22. The similarity
maps contain positive scores indicating where and to what extent prototypes
are present in an image. ProtoPNet uses the highest value of the similarity map
gpi

j
= max(Mx

pi
j
) as the final similarity score between pi

j and X, indicating how

strong the prototype pi
j is present in X. Finally, the b similarity scores from the

prototype layer gp are aggregated in the fully connected layer h to generate the
final classification logits. To make the prototypes visualizable as specific proto-
typical parts of a sample, the learned prototypes are replaced with the closest
feature representation from real training images to ensure interpretability.

ProtoPNet explains its predictions for a given image (“local explanation”) by
(1) visualizing the similarity map for each prototype pi

j and (2) by computing
the smallest bounding box enclosing the 95th percentile of all similarity val-
ues [4], providing the corresponding cropped region as the most similar part to
the learned prototype to imply ’this part of the input looks like that learned proto-
type’. The same approach is used to provide explanations of the concepts learned
by the model (“global explanations”) by cropping the prototypes from the most
similar training image. However, ProtoPNet provides only coarse-grained simi-
larity maps due to the large receptive field size of the model [7]. Furthermore, the
explanation is not faithful to the model, as the cropped area does not correspond
to the model’s receptive field. As a result, ProtoPNet provides both imprecise
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local and global explanations of its decisions. These issues are likely to be shared
by all prototype-based models derived from ProtoPNet [19].

2.2 Enhancing interpretability with the BagNet backbone

As prototypes are learned in the feature space, the backbone feature extractor
plays a crucial role for interpretability. It implicitly determines the size of the
learned prototypes through its receptive field and thus the size of the explanation.
The ProtoPNet and its variants use classical architectures such as ResNet-50
[4, 10, 14], resulting in large receptive fields (e.g. 427 × 427 for a ResNet-50
backbone) with variable explanation size. Here, we propose to replace the feature
extractor with a BagNet architecture [3, 13] (Fig. 1b), leading to a model we
called Proto-BagNet (Fig. 1). The feature map Z = f(X) is extracted from the
BagNet’s penultimate layer (Fig. 1c, typicallyD = 2048). This architecture leads
to a small fixed receptive field and prototypes of size r × r independent of the
input size. It also allows for higher-resolution feature and prototype similarity
maps, and can therefore provide localized, fine-grained explanations.

2.3 Integrating recent advances in training prototype-based models

In addition, we implemented recent advances in prototype-based networks train-
ing [2, 10, 14]. (1) To prevent prototypes of one class from contributing to the
prediction of other classes, we replaced the fully connected classification layer of
ProtoPNet with a soft aggregation (SA) layer (Fig. 1f) [10], which aggregates the
prototypes’ similarity scores only in their assigned classes, setting weights be-
tween classes to zero. (2) To enable the model to consider multiple image regions
for the classification task instead of considering only the region with the high-
est score of each similarity map as in ProtoPNet, we considered the top-k scores
through average pooling as gpji = AvgPool

(
topk(M

pi
j
)
)
[2]. Thus, our similarity

map indicates to what extent a prototype is present on average in the k most
similar prototypical parts of the input. (3) We regularized the prototype layer
by adding a sparsity constraint to each similarity map as in [13,14], to constrain
activation to discriminative input regions. (4) Finally, as we noticed redundant
prototypes (often extracted from the same training image, see Suppl. Fig. 1), we
introduced a dissimilarity loss (see below) to prevent the network from learning
duplicate prototypes while promoting their coherence and uniqueness. Thus, the
total loss function was:

L = Lce + λclstLclst + λsepLsep︸ ︷︷ ︸
ProtoPNet

+λL1,cLL1,c + λL1,sLL1,s − λdiss

∑
pi,pj

∥pi − pj∥2

Here, Lce is the cross-entropy loss; Lclst and Lsep the cluster and separation losses
from ProtoPNet [4], LL1,c is the ℓ1 regularization of the classification layer as

in [4]; LL1,s regularizes the similarity maps [13,14]. Finally,
∑

pi,pj
∥pi − pj∥2 is

our proposed dissimilarity loss with pi,pj ∈ P, i ̸= j.
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Our architectural changes alongside with the modified loss function led to
an interpretable-by-design prototype-based model (Proto-BagNet) that is easier
to interpret, relying on the small receptive field of the model for predictions
and explanations. In addition, Proto-BagNet provides accurate local and global
explanations (see Sec. 3.3, and 3.4) in the form of ’this part of the input actually
looks like that learned prototype’.

3 Results

3.1 Dataset

We used a publicly available, anonymized dataset [12] consisting of retinal OCT
B-scans from patients with various diseases (drusen, DME, CNV). We focused
on the binary task of drusen detection and filtered out images with DME and
CNV diagnoses, as well as low-resolution images (width < 496). To counter the
class imbalance, we removed half of the healthy images, leading to a dataset of
34, 962 images (8, 616 drusen, 26, 346 healthy). We split the resulting dataset into
training (80%) and validation (20%) sets, preserving the imbalance proportion
(73% vs 27%) and ensuring that all B-scans from each patient were assigned
to the same set. We then used the separate test set included in the dataset
for evaluation, consisting of 250 healthy and 248 drusen images (51% vs 49%),
reflecting the high variability of drusen prevalence according to age group [18].
All images were resized to 496× 496 and normalized by the mean and standard
deviation of the training set. To evaluate the relevance of the learned prototypes,
an experienced in-house ophthalmologist provided detailed drusen annotations
on a selection of 40 test images.

3.2 Proto-BagNet yields good accuracy on drusen detection

We first evaluated the classification performance of our method for a clinically
relevant binary task of detecting patient’s OCT-B scans with drusen lesions (lipid
deposits under the retina [6]), characteristic of age-related macular degeneration
and diabetic retinopathy [6,12]. For Proto-BagNet, we configured the backbone
feature extractor (BagNet model) to a receptive field size r = 33 as in [13].
Hyperparameters including regularization coefficients, data augmentation, and
the number of prototypes were optimized on the validation dataset using a grid
search, while λsep and λclst were set as in [4]. Based on the validation perfor-
mance, we set k = 5 considering the average top-5 and used m = 5 prototypes
per class, which lead to a total of b = 10 prototypes.

We compared Proto-BagNet against ProtoPNet with a ResNet-50 backbone
[4] and with non-prototype classification networks such as a dense BagNet [13]
and ResNet-50 [9]. We followed the same training procedure for ProtoPNet (with
λL1,s =λdiss=0, K=1) and Proto-BagNet (with λL1,s=4 · 10−2, λdiss=5 · 10−3,
K=5), as well as for dense BagNet and ResNet-50. Our Proto-BagNet performed
comparably to the state-of-the-art models (Tab. 1, see confidence intervals in
Suppl. Tab. 1), showing that our modifications towards better interpretability
did not substantially impair classification performance.
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Fig. 2. Example explanations of ProtoPNet and Proto-BagNet. (a,d) show two learned
prototypes with the highest classification weights. Proto-BagNet’s prototypes were
magnified for visualization only. (b,e) show bounding boxes around regions of highest
activation using the visualization technique provided by ProtoPNet (green) and the
model’s receptive field (yellow). (c,f) show prototypes activations of the query image.

3.3 Proto-BagNet provides understandable localized explanations

To qualitatively assess explanations provided by our model, we visualized the two
learned prototypes with the highest classification weights for our Proto-BagNet
as well as ProtoPNet (Fig. 2a,d). ProtoPNet learned very large prototypes cov-
ering almost the entire retina, while Proto-BagNet learned prototypes of small
regions of interest with fixed sizes corresponding to its receptive field. For a
query image, we then displayed bounding boxes (Fig. 2b,e) around the most
similar prototypical part to the learned prototypes. For both models, we first
computed the explanation of the prototypical part as the receptive field around
the location of the highest prototype similarity (yellow boxes). Due to the large
receptive field in ProtoPNet, the explanations were not informative, while the
Proto-BagNet yielded small localized patches of the same size as the prototypes
themselves. We then computed the explanation as the bounding box around
the 95th percentile of the similarity map as in [4], which is not faithful to the
model’s predictions, as it usually leads to large and similar explanations (green
bounding boxes, Fig. 2b,e). In both models, this again led to large bounding
boxes around the entire retina, indicating that such prototype explanations may

Table 1. Classification performance for drusen detection on validation and test sets.

Validation set Test set
Accuracy AUC Recall Precision Accuracy AUC Recall Precision

ResNet-50 0.991 0.999 0.982 0.986 0.994 0.999 0.992 0.996
dense BagNet 0.990 0.999 0.978 0.985 0.988 0.999 0.976 0.999

ProtoPNet 0.987 0.996 0.975 0.974 0.998 0.999 0.996 0.999
Proto-BagNet 0.978 0.990 0.935 0.981 0.968 0.992 0.940 0.996
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Fig. 3. We show (a) the five learned disease prototypes and (b) suspicious regions
(green boxes, enlarged below) extracted from each prototype similarity map on an
example image. Drusen (annotated with red markers) are detected with high precision.

not be useful when evidence may be spread in an image (see similarity maps
in Fig. 2c,f), as is often the case in medical images. To summarize, the coarse
explanations provided by ProtoPNet were not informative as already highlighted
in [7, 19], while the small receptive field of Proto-BagNet leads to fine-grained
and localized explanations.

3.4 Proto-BagNet learns meaningful and relevant prototypes

We assessed the clinical meaning and relevance [5, 8] of the prototypes learned
by Proto-BagNet by evaluating (1) their interpretability and (2) their coherence
as the precision of their corresponding similarity maps at localizing drusen.

We first evaluated the interpretability of the learned prototypes by show-
ing the prototypes without additional context (Fig. 3a) to a clinical expert and
asking her if she could understand the concepts encoded in each of them. She
described each prototype despite their low resolution as: (1) soft drusen; (2)
two drusen in transformation; (3) typical drusen; (4) drusen with RPE 7 thin-
ning and dense substance inside; and (5) drusen with RPE thinning probably in
transformation, showing that the learned prototype where semantically mean-
ingful even when seen in isolation, and diverse due to the enforced dissimilarity
(Suppl. Fig. 1). Next, we obtained annotations of the 5 training images from
which the learned prototypes were extracted (Suppl. Fig. 2). We found that all
learned prototypes (i.e. 100%) were extracted from regions labeled as drusen,
confirming that Proto-BagNet learns interpretable and meaningful prototypes.

Subsequently, we evaluated the relevance of the learned prototypes on a
subset of 40 test images where an ophthalmologist annotated the presence of
drusen. On this subset, we calculated the precision of the prototype similarity
maps at localizing drusen lesions to assess whether the highlighted prototyp-
ical parts contain similar concepts (drusen related) to those encoded by the
learned prototypes. We extracted the k = 5 prototypical parts as the most
discriminative regions similar to each disease prototype (Fig. 3b, more exam-
ples in Suppl. Figs. 3, 4), which were also used in the classification mechanism.

7 Retinal Pigment Epithelium
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Fig. 4. (a) Example drusen image with overlaid prototype similarity map. (b) Oc-
cluded image keeping only the top five regions most similar to each prototype. (c-e)
Images resulting from occluding the most five regions similar to a prototype (1,2,3).

From these, we calculated the precision as the proportion of the prototypi-
cal parts (green boxes, magnified on the bottom) which contained annotated
drusen lesions (red markers) [13]. The top-k prototypical parts highlighted by
the prototype heatmaps contained drusen lesions with high precision ranging
from 0.83 (k = 2) to 0.87 (k = 1) depending on k ∈ {1, . . . , 5}, with p = 0.84±0.2
(mean ± SD) for k = 5.

3.5 Proto-BagNet relies on a faithful decision-making process

Finally, we verified that Proto-BagNet makes decisions based solely on the visual
explanation it provides (i.e. on the k input prototypical parts most similar to
each prototype). To assess the faithfulness of our model, we applied the model
to the test set (example image in Fig. 4a) and then masked all image regions ex-
cept the top-k prototypical parts identified by the model (Fig. 4b). We reapplied
the model to these occluded images and compared the classification output to
the output on the original data. The distribution of predicted logits on original
images (0.03 ± 0.06, and 0.96 ± 0.15) was similar to that on occluded images
(0.03±0.07, and 0.96±0.15), respectively, for healthy and diseased images. The
AUC after occlusion was almost similar (0.9918 vs 0.9916) to that obtained with-
out occlusion. We conclude that Proto-BagNet really makes decisions based only
on the prototypical parts, and that the explanations provided by the extracted
regions are faithful representations of these prototypical parts.

We quantified the importance of each prototype by additionally masking
its k prototypical parts in the occluded test images (Fig. 4c-e) and measuring
the change in classifier predictions. The predicted drusen probability on healthy
images increased by 0.27± 0.14 on average when removing healthy prototypical
parts (i.e. the region similar to healthy prototypes), while it decreased by 0.42±
0.17 when removing disease prototypical parts on drusen images. To summarize,
the prototypical parts extracted by the model are indeed evidence for healthy
and diseased tissue, respectively, as can be seen by the changes in classifier
predictions when occluding them.
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4 Discussion and Conclusion

In this work, we proposed Proto-BagNet, an interpretable-by-design prototype-
based model that provides faithful and highly localized explanations as well as
global interpretability through meaningful prototypes. We evaluated the inter-
pretability of our model through feedback by an ophthalmologist who identified
diverse and clinically relevant concepts in the learned prototypes. Furthermore,
the model explanations precisely detected drusen lesions in the images. We eval-
uated the Proto-BagNet for drusen classification on OCT, a solved task in terms
of predictive performance (Tab. 1), which lends itself for studying interpretable
models due to identifiable and well-characterized regions of interest. However,
we noticed that some design choices (e.g., SA layer, k-values) and introduced
loss components (dissimilarity and sparsity) enhance interpretability but com-
pete with classification performance (Tab. 1), suggesting that determining the
ideal tradeoff might depend on the specific clinical setting. Additionally, the ap-
propriate receptive field size may vary depending on the clinical task and image
resolution. In our case, the drusen are small (< 63µm [18]) and fit into a patch
of size 33 × 33 and can be changed for other tasks to inject clinical knowledge
and adjust for resolution. In a next step, we believe our approach could also
be applied to more challenging tasks, and could be useful for the discovery of
unknown relevant concepts. In summary, our work may enable prototype-based
networks to take a more central stage for realistic task settings, as a promis-
ing alternative to post-hoc explanations of black-box models, in particular on
medical images.
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