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Abstract. Generative models hold promise for revolutionizing medical
education, robot-assisted surgery, and data augmentation for machine
learning. Despite progress in generating 2D medical images, the complex
domain of clinical video generation has largely remained untapped. This
paper introduces Endora, an innovative approach to generate medical
videos that simulate clinical endoscopy scenes. We present a novel genera-
tive model design that integrates a meticulously crafted spatial-temporal
video transformer with advanced 2D vision foundation model priors,
explicitly modeling spatial-temporal dynamics during video generation.
We also pioneer the first public benchmark for endoscopy simulation
with video generation models, adapting existing state-of-the-art meth-
ods for this endeavor. Endora demonstrates exceptional visual quality in
generating endoscopy videos, surpassing state-of-the-art methods in ex-
tensive testing. Moreover, we explore how this endoscopy simulator can
empower downstream video analysis tasks and even generate 3D medical
scenes with multi-view consistency. In a nutshell, Endora marks a notable
breakthrough in the deployment of generative AI for clinical endoscopy
research, setting a substantial stage for further advances in medical con-
tent generation. Project page: https://endora-medvidgen.github.io/.
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1 Introduction

Recent strides in generative AI have sparked significant interest across med-
ical disciplines [20,17], pushing the frontiers of computer-aided diagnostics to
new heights [38]. Amidst a broad array of endeavors in medical AI—ranging
from visual question answering [5] and text summarizing [30] to image recon-
struction [40] and translation [4], and even mixed reality for surgical assis-
tance [27,26,19,41,15]—we venture into uncharted territories and ask: Can we
generate dynamic, realistic, and complex content like clinical endoscopy videos?

Endoscopy is a field at the forefront for advances in gastrointestinal disease di-
agnosis, minimally invasive procedures, and robotic surgeries. Despite its critical
⋆ Equal contribution
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role, endoscopic research and training are hindered by the scarcity of visual data,
as capturing images inside the body with small endoscopes is inherently difficult.
The dire need for a diverse and quality-rich collection of clinical endoscopy videos
underscores the urgency for breakthroughs in medical generative AI. We aim to
build a powerful endoscopy video simulator and create an extensive array of
high-quality endoscopy videos, thus enriching the resources available for medical
professionals and improving training data for surgical robots and AI algorithms.
This exciting venture prompts us to probe deeper into several research ques-
tions: ➊ Establishing Video Benchmarks: Medical imaging and text have
established benchmark applications, such as automated text report generation
and image reconstruction [30]. Can we extend this success to medical videos
and properly benchmark endoscopy simulation quality? ➋ Spatial-Temporal
Modeling: While current methods are effective in generating realistic 2D clini-
cal images by generative adversarial networks (GANs) and diffusion models [12],
the dynamic nature of endoscopy videos, rich with spatial-temporal correlation,
poses a significant challenge. Can our models effectively simulate the intricacies
of real-life surgical procedures?

Driven by these questions, we formulate a framework to generate spatially
and temporally coherent and plausible endoscopy videos to synthesize realis-
tic clinical scenes. Marking a departure from traditional approaches to medical
content generation that primarily deal with textual and 2D image data, we
aspire to set a holistic benchmark for future explorations in video genera-
tion models within the medical domain. In particular, by meticulously crafting
our model, Endora, for dynamic medical videos, we explore the initial experi-
ence baseline for pipeline design towards endoscopy video simulation (Fig. 1).
We further pioneer the exploration of experimental baseline in endoscopic video
generation, characterized by the comprehensive collection of clinical videos, and
adapt existing generic video generation models for this purpose (Sec. 3.1 and
Sec. 3.2). Simultaneously, we thoroughly investigate the extensive dimensions of
evaluation baseline in video generation, including the fidelity of generated con-
tent, the improvement in performance for downstream video analysis through
data augmentation, and the geometrical quality assessed by multi-view consis-
tency in generation (Sec. 3.2 and Sec. 3.3).

To address the unique challenges of capturing the spatio-temporal com-
plexity and fluidity of real-life medical procedures, we integrate an advanced
video transformer architecture with a latent diffusion model, facilitating the
extraction of long-range correlations in terms of both spatial and temporal di-
mension from video data. Specially, the training process involves using a pre-
trained variational autoencoder [37,22] to encode video inputs into a latent space.
These encoded features are then processed through a sequence of transformer
blocks. Furthermore, to ensure consistency across video frames, we employ a
feature prior from a 2D foundation model, DINO [7], which helps in regulat-
ing key features from different perspectives. Our extensive testing demonstrates
that Endora can produce highly realistic endoscopic videos, showcasing its ef-
fectiveness and potential for medical video generation with rich dynamics. In
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Fig. 1. Endora Training Overview. Starting from the noised input video sequences,
the diffusion model iteratively removes the noise and recover the clean sequence. The
long-range spatial-temporal dynamics is modeled by an interlaced cascading of several
spatial-temporal Transformer blocks. We further instill the prior from 2D vision foun-
dation model (DINO [7]) to guide feature extraction.

a nutshell, Endora leads the effort in creating complex, high-dimensional sur-
gical video content, setting a benchmark for future medical generative AI re-
search. Our key contributions include: (i) Introducing a high-fidelity medical
video generation framework, tested on endoscopy scenes, laying the groundwork
for further advancements in the field. (ii) Creating the first public benchmark
for endoscopy video generation, featuring a comprehensive collection of clinical
videos and adapting existing general-purpose generative video models for this
purpose. (iii) Developing a novel technique to infuse generative models with
features distilled from a 2D visual foundation model, ensuring consistency and
quality across different scales. (iv) Demonstrating Endora’s versatility through
successful applications in video-based disease diagnosis and 3D surgical scene
reconstruction, highlighting its potential for downstream medical tasks.

2 Method

We train Endora to generate plausible endoscopy videos given the collection of
actual clinical observations. Firstly, the diffusion backbone is introduced and
lifted to handling video formats (Sec. 2.1). We further introduce cascaded trans-
former blocks interlaced for spatial and temporal modeling (Sec. 2.2). The prior
from image foundation models is distilled to effectively guide the generation of
the high-dimensional intricate video representation.
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2.1 Diffusion Model for Video Generation

Generative diffusion models based on Denoising Diffusion Probability Models
(DDPM) specializes in transforming disordered noise into desirable samples. By
progressively removing noise from Gaussian noise p (xT ) = N (0, I), these models
generate samples aligned with the target data distribution. The forward diffusion
step, denoted as q(xt|xt−1), adds Gaussian noise into the image xt. The corre-
sponding marginal distribution can be expressed as: q (xt | x0) = N

(
αtx0, σ

2
t I

)
,

where αt and σt are designed to converge to N (0, I) when t reaches the end of
the forward process [13]. The reverse diffusion process p(xt−1|xt) is designed as
a noise estimator ϵθ(xt, t) that estimates noise from noisy images. The training
process involves optimizing the weighted evidence lower bound (ELBO) [13],

ELBO = E
[
w(t) ∥ϵθ (αtx0 + σtϵ; t)− ϵ∥22

]
, (1)

where ϵ is drawn from N (0, I), the timestep t follows a uniform sampling, and
w(t) serves as a weighting function with w(t) = 1.

Lifting diffusion models for videos escalates computational overhead and rep-
resentation complexity. Latent Diffusion Models1 performs the diffusion pro-
cesses in the encoded latent space rather than the pixel space, improving model
efficiency [16]. Another strategy [11] trains video and image generation simulta-
neously to improve video generation quality. We adopt similar strategies in our
framework but further introduce new innovations detailed below.

2.2 Spatial-temporal Transformer

Drawing insights from ViT [9] on spatial correlation capture [35], a transformer
that exclusively extracts spatial information from tokens that share the same
temporal index is introduced as a Spatial Transformer. We employ the patch
embedding strategy to indicate the position embedding for this Spatial Trans-
former. A Temporal Transformer is further introduced to capture temporal in-
formation across video frames. We integrate temporal position embeddings ac-
complished by using an absolute position encoding strategy, which combines
sinusoidal functions of varying frequencies. This strategy enables the model to
accurately determine the exact position of each frame within the video sequence.

Specially, given a video clip in the latent space, denoted as V ∈ RF×H×W×C ,
where F , H, W , and C denote the number of video frames, height, width, and
channel of latent feature maps. We convert V into a sequence of tokens, repre-
sented as Ẑ ∈ RNF×NH×NW×D. The total number of tokens within a video clip
in the latent space is NF × NH × NW and D represents the dimension of each
token, respectively. A spatial-temporal positional embedding PE is integrated
into Ẑ. Consequently, Z = Ẑ + PE serves as the input for the Transformer
backbone. We reshape Z into ZS ∈ RNF×L×D to serve as the input for the Spa-
tial Transformer block, which captures spatial information. Here, L = NH ×NW

1 https://github.com/CompVis/latent-diffusion

https://github.com/CompVis/latent-diffusion
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represents the token count of each temporal index. Subsequently, ZS , containing
spatial information, is reshaped into ZT ∈ RL×NF×D as the input for Temporal
Transformer block, which is used to capture temporal information. By interlac-
ing a series of Spatial and Temporal Transformers, our model enables modeling
long-range spatial correlations and temporal dynamics comprehensively.

2.3 Prior-guided Feature Facilitation

Compared to 2D contents, recovering video frames from noise is difficult, as we
cannot adequately approximate the continuity of the temporal dimension, con-
fined to sampling at specific quantized timestamps. Hence, it is better to optimize
diffusion models to enable the inverse back projection of noise sequences into a la-
tent time-continuous video space aligned with human perception [34,25,32]. How-
ever, they primarily consider semantic correlations between frames and do not
adequately address dense correlations (e.g., patches, key points) across frames,
which are crucial for frame continuity at a finer granularity.

Inspired by recent efforts of facilitating dense task [3] via vision foundation
models like DINO [7], we consider leveraging the DINO features as they exhibit
not only strong semantic correlation but also a potent ability to extract dense
correspondence [3]. We propose to integrate the multi-scale representation [21]
produced by DINO encoder, ranging from the outputs of its shallow layers to
the deeper layers, as a prior obtained by large-scale 2D pre-training to guide
the video diffusion training. We use attention maps from DINO [7], and apply
a convolution operation with a stride of 2 and a 3x3 kernel to accommodate
them with the dimension of diffusion attention maps. Considering the disparate
regimes between DINO and Endora, we employ the relative distribution similar-
ity to match features, by Pearson correlation,

Corr(AEndora ,Conv(ADINO)) =
Cov (AEndora ,Conv (ADINO))√

V ar(AEndora )
√

V ar (Conv (ADINO))
(2)

where A is attention maps, Conv(·) is the aforementioned convolution layer,
Cov(·) is covariance, and V ar(·) is variance. We simultaneously maximize this
correlation of attention maps at multiple levels (four layers) between DINO
encoder and Endora Spatial Transformer blocks, as shown in Fig. 1. With the
guidance of the discriminative DINO prior, the semantic and spatial dependence
can be thoroughly enhanced, boosting the photorealism of generated videos.

Finally, the overall optimization objective for training Endora is to minimize
the following combination of the quantity in Eq. 1 and Eq. 2, LDDPM+αLPrior =
ELBO + α(1− Corr). We set α = 0.5 by grid searching.

3 Experiments

3.1 Experiment Settings

Datasets and Evaluation. We conduct comprehensive experiments on three
public endoscopy video datasets: Colonoscopic [29], Kvasir-Capsule [6], Cholec-
Triplet [31]. Following common practice [28], we extract 16-frame video clips
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Table 1. Quantitative Comparisons on Endoscopic Video Datasets.

Method
Colonoscopic [29] Kvasir-Capsule [6] CholecTriplet [31]

FVD ↓ FID ↓ IS ↑ FVD ↓ FID ↓ IS ↑ FVD ↓ FID ↓ IS ↑

StyleGAN-V [34](CVPR’22) 2110.7 226.14 2.12 183.5 31.61 2.77 594.1 87.46 3.36
LVDM [10](Arxiv’23) 1036.7 96.85 1.93 1027.8 200.9 1.46 1361.5 91.25 2.65
MoStGAN-V [33](CVPR’23) 468.5 53.17 3.37 82.77 17.34 2.53 416.2 72.87 3.56

Endora (Ours) 460.7 13.41 3.90 72.25 10.61 2.54 236.2 11.20 4.09

Table 2. Semi-supervised Classification Result (F1 Score) on PolyDiag [36].

Method Colonoscopic [29] CholeTriplet [31]

Supervised-only 74.5 74.5
LVDM [10] 76.2 (+1.7) 78.0 (+3.5)

Endora (Ours) 87.0 (+12.5) 82.0 (+7.5)

from these datasets using a specific sampling interval, with each frame resized to
128×128 resolution for training. In the assessment of quantitative comparisons,
we employ three evaluation metrics: Fréchet Video Distance (FVD), Fréchet
Inception Distance (FID), and Inception Score (IS). Adhering to the evaluation
rules in StyleGAN-V [34], we compute FVD scores by analyzing 2048 video clips,
each comprising 16 frames.
Implementation Details. We employ the AdamW optimizer, with a constant
learning rate of 1×10−4 for training all models. We simply apply the basic data
augmentation as horizontal flipping. Following standard practices in generative
models, we use the exponential moving average (EMA) strategy [23] and report
the performance on EMA model for final result sampling. We directly use the
pre-trained variational autoencoder [8,39] from Stable Diffusion. Our model is
constructed by n = 28 Transformer blocks, with a hidden dimension of d = 1152
with n = 16 multi-head attention in each block, following ViT [9].

3.2 Comparison with State-of-the-arts

We conduct performance comparison by replicating several advanced video gen-
eration models designed for general scenarios on the endoscopic video datasets,
including StyleGAN-V [34], MoStGAN-V [33] and LVDM [10]. As shown in
Tab. 1, Endora excels over the state-of-the-art methods based on GAN [34,33]
for endoscopic video generation in terms of high visual fidelity by all three
metrics. Furthermore, Endora surpasses the advanced diffusion-based method,
LVDM [10] in all aspects, indicating that Endora effectively generates a ac-
curate video representation of endoscopic scenes. Fig. 2 further showcases the
qualitative results of Endora and prior state-of-the-arts. We can observe that
other techniques result in visually discordant distortions (row 1), restricted con-
tent variations (rows 2 and 4), and discontinuous inter-frame transitions (row 5,
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Fig. 2. Qualitative Comparison on Kvasir-Capsule [6] and Cholec [31] Datasets.

Table 3. Ablation Studies of Proposed Components on Colonoscopic [29] Dataset.

Modified
Diffusion

Spatiotemporal
Encoding

Prior
Guidance FVD↓ FID↓ IS↑

✗ ✗ ✗ 611.9 22.44 3.61
✓ ✗ ✗ 593.7 17.75 3.65
✓ ✓ ✗ 493.5 13.88 3.89

✓ ✓ ✓ 460.7 13.41 3.90

abrupt intrusion of surgical instruments). In contrast, the video frames gener-
ated by Endora (rows 3 and 6) avoid discordant visual distortions (row 1), retain
more visual details, and offer superior visual representation of tissues.

3.3 Further Empirical Studies

In this section, we illustrate several potential applications of leveraging the gen-
erated videos of our Endora and conduct rigorous ablations on our key strategies.
Case I: Endora as a Temporal Data Augmenter. We explore the case of us-
ing generated videos as the unlabeled instances for semi-supervised training (by
FixMatch [1]) on the video-based disease diagnosis benchmark (PolyDiag [36]).
Specially, we use the randomly selected nl = 40 videos in training set of Poly-
Diag as labeled data, and nu = 200 generated videos as the unlabeled data
in Colonoscopic [29]and CholecTriplet [31], respectively. Tab. 2 depict the F1
score of disease diagnosis, with the gain over the baseline using merely labeled
training instances labeled (Supervised-Only). The outcomes indicate a notable
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Fig. 3. RGB and 3D Depth Reconstructed from Generated Videos.

enhancement in downstream performance attributable to the data generated by
Endora compared to not only the Supervised-only baseline but also other video
generation methodologies, confirming the efficacy of Endora as a reliable video
data augmenter for downstream video analysis.
Case II: Endora as a Surgical World Simulator. Emerging multi-view con-
sistent properties in generated contents [24,14,18] inspire our exploration into
whether a similar geometric consistency exists in our generated surgical videos.
Specially, from a generated video, we take some frames to as training data for
3D reconstruction (training views), and keep the other frames as testing data
(novel views). We then preprocess the training views with COLMAP [2] and
then run an off-the-shelf 3D reconstruction pipeline (EndoGaussian [27]) to ob-
tain a reconstructed 3D endoscopy scene. Fig. 3 provides the visualization of the
rendered RGB images and depth maps at novel views, with the image PSNR
and depth-wise total variation (TV) labeled. We can observe that the 3D scenes
reconstructed from our generated videos exhibit realistic and continuous geo-
metric structure, showing the potential of Endora to effectively perform surgical
world simulation in a multi-view-consistent manner.
Ablation Studies. Table 3 presents an ablation study of the key components
of the proposed Endora. Initially, we employ a plain video diffusion model with-
out any of the proposed strategies as a baseline. Subsequently, we add the pro-
posed three design strategies one at a time: modified diffusion (Sec. 2.1), spatial-
temporal encoding (Sec. 2.2), and prior guidance (Sec. 2.3). We can observe they
lead to a steady progression in the performance of model, confirming the crucial
role of our designed strategies in enhancing the overall efficiency and effectiveness
of the endoscopy video generation model.

4 Conclusion

Endorais a pioneering framework for medical video generation, producing high-
quality, realistic endoscopy simulations. It combines a video transformer for long-
range spatial-temporal modeling with priors from advanced 2D vision foundation
models for enhanced feature extraction. Rigorous benchmarking shows Endora’s
superior visual quality and potential for data augmentation in downstream video
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analysis. It enables 3D surgical scene simulation when paired with existing en-
doscopy reconstruction methods. Endoraadvances medical generative AI, provid-
ing insights and foundations for future research in medical content generation.

Acknowledgments. This work was supported by Hong Kong Innovation and Tech-
nology Commission Innovation and Technology Fund ITS/229/22 and Research Grants
Council (RGC) General Research Fund 14204321, 11211221.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

Author contributions. Conceptualization: C. Li. Methodology: C. Li, Y. Liu, B.
Feng. Implementation: C. Li, H. Liu, Y. Liu. Writing: C. Li, B. Feng. Experiment
Design: C. Li, B. Feng, W. Li. Visualization: C. Li, H. Liu, B. Feng, W. Li. Supervision:
X. Liu, Z. Chen, J. Shao, Y. Yuan.

References

1. https://github.com/google-research/fixmatch 7
2. https://github.com/colmap/colmap 8
3. Amir, S., Gandelsman, Y., Bagon, S., Dekel, T.: Deep vit features as dense visual

descriptors. arXiv preprint arXiv:2112.05814 2(3), 4 (2021) 5
4. Armanious, K., Jiang, C., Fischer, M., Küstner, T., Hepp, T., Nikolaou, K., Gatidis,

S., Yang, B.: Medgan: Medical image translation using gans. Computerized medical
imaging and graphics 79, 101684 (2020) 1

5. Ben Abacha, A., Hasan, S.A., Datla, V.V., Demner-Fushman, D., Müller, H.: Vqa-
med: Overview of the medical visual question answering task. In: Proceedings of
CLEF 2019 Working Notes. 9-12 September 2019 (2019) 1

6. Borgli, H., Thambawita, V., Smedsrud, P.H., Hicks, S., Jha, D., Eskeland, S.L.,
Randel, K.R., Pogorelov, K., Lux, M., Nguyen, D.T.D., et al.: Hyperkvasir, a com-
prehensive multi-class image and video dataset for gastrointestinal endoscopy. Sci-
entific data 7(1), 1–14 (2020) 5, 6, 7

7. Caron, M., Touvron, H., Misra, I., Jégou, H., Mairal, J., Bojanowski, P., Joulin,
A.: Emerging properties in self-supervised vision transformers. In: ICCV. pp. 9650–
9660 (2021) 2, 3, 5

8. Ding, Z., Dong, Q., Xu, H., Li, C., Ding, X., Huang, Y.: Unsupervised anomaly
segmentation for brain lesions using dual semantic-manifold reconstruction. In:
ICONIP. pp. 133–144. Springer (2022) 6

9. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner,
T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.:
An image is worth 16x16 words: Transformers for image recognition at scale. In:
ICLR (2021) 4, 6

10. He, Y., Yang, T., Zhang, Y., Shan, Y., Chen, Q.: Latent video diffusion models for
high-fidelity long video generation. arXiv preprint arXiv:2211.13221 (2023) 6

11. Ho, J., Salimans, T., Gritsenko, A., Chan, W., Norouzi, M., Fleet, D.J.: Video
diffusion models. In: NeurIPS (2022) 4

12. Kazerouni, A., Aghdam, E.K., Heidari, M., Azad, R., Fayyaz, M., Hacihaliloglu, I.,
Merhof, D.: Diffusion models for medical image analysis: A comprehensive survey.
arXiv preprint arXiv:2211.07804 (2022) 2

https://github.com/google-research/fixmatch
https://github.com/colmap/colmap


10 C. Li et al.

13. Kingma, D., Salimans, T., Poole, B., Ho, J.: Variational diffusion models. NeurIPS
34, 21696–21707 (2021) 4

14. Li, C., Feng, B.Y., Fan, Z., Pan, P., Wang, Z.: Steganerf: Embedding invisible
information within neural radiance fields. In: CVPR. pp. 441–453 (2023) 8

15. Li, C., Feng, B.Y., Liu, Y., Liu, H., Wang, C., Yu, W., Yuan, Y.: Endosparse: Real-
time sparse view synthesis of endoscopic scenes using gaussian splatting. arXiv
preprint arXiv:2407.01029 (2024) 1

16. Li, C., Lin, M., Ding, Z., Lin, N., Zhuang, Y., Huang, Y., Ding, X., Cao, L.:
Knowledge condensation distillation. In: ECCV, pages=19–35, year=2022, organi-
zation=Springer 4

17. Li, C., Lin, X., Mao, Y., Lin, W., Qi, Q., Ding, X., Huang, Y., Liang, D., Yu, Y.:
Domain generalization on medical imaging classification using episodic training
with task augmentation. CBM 141, 105144 (2022) 1

18. Li, C., Liu, H., Fan, Z., Li, W., Liu, Y., Pan, P., Yuan, Y.: Gaussianstego: A gener-
alizable stenography pipeline for generative 3d gaussians splatting. arXiv preprint
arXiv:2407.01301 (2024) 8

19. Li, C., Liu, H., Liu, Y., Feng, B.Y., Li, W., Liu, X., Chen, Z., Shao, J., Yuan,
Y.: Endora: Video generation models as endoscopy simulators. arXiv preprint
arXiv:2403.11050 (2024) 1

20. Li, C., Liu, X., Li, W., Wang, C., Liu, H., Yuan, Y.: U-kan makes strong backbone
for medical image segmentation and generation. arXiv:2406.02918 (2024) 1

21. Li, C., Ma, W., Sun, L., Ding, X., Huang, Y., Wang, G., Yu, Y.: Hierarchical deep
network with uncertainty-aware semi-supervised learning for vessel segmentation.
Neural Computing and Applications pp. 1–14 (2022) 5

22. Li, C., Zhang, Y., Li, J., Huang, Y., Ding, X.: Unsupervised anomaly segmentation
using image-semantic cycle translation. arXiv preprint arXiv:2103.09094 (2021) 2

23. Li, C., Zhang, Y., Liang, Z., Ma, W., Huang, Y., Ding, X.: Consistent poste-
rior distributions under vessel-mixing: a regularization for cross-domain retinal
artery/vein classification. In: ICIP. pp. 61–65. IEEE (2021) 6

24. Li, X., Zhou, D., Zhang, C., Wei, S., Hou, Q., Cheng, M.M.: Sora generates videos
with stunning geometrical consistency. arXiv preprint arXiv:2402.17403 (2024) 8

25. Liang, Z., Rong, Y., Li, C., Zhang, Y., Huang, Y., Xu, T., Ding, X., Huang, J.:
Unsupervised large-scale social network alignment via cross network embedding.
In: CIKM. pp. 1008–1017 (2021) 5

26. Liu, H., Liu, Y., Li, C., Li, W., Yuan, Y.: Lgs: A light-weight 4d gaussian splatting
for efficient surgical scene reconstruction. arXiv:2406.16073 (2024) 1

27. Liu, Y., Li, C., Yang, C., Yuan, Y.: Endogaussian: Gaussian splatting for de-
formable surgical scene reconstruction. arXiv:2401.12561 (2024) 1, 8

28. Ma, X., Wang, Y., Jia, G., Chen, X., Liu, Z., Li, Y.F., Chen, C., Qiao, Y.: Latte:
Latent diffusion transformer for video generation. arXiv:2401.03048 (2024) 5

29. Mesejo, P., Pizarro, D., Abergel, A., Rouquette, O., Beorchia, S., Poincloux, L.,
Bartoli, A.: Computer-aided classification of gastrointestinal lesions in regular
colonoscopy. IEEE TMI 35(9), 2051–2063 (2016) 5, 6, 7

30. Mishra, R., Bian, J., Fiszman, M., Weir, C.R., Jonnalagadda, S., Mostafa, J.,
Del Fiol, G.: Text summarization in the biomedical domain: a systematic review
of recent research. Journal of biomedical informatics 52, 457–467 (2014) 1, 2

31. Nwoye, C.I., Yu, T., Gonzalez, C., Seeliger, B., Mascagni, P., Mutter, D.,
Marescaux, J., Padoy, N.: Rendezvous: Attention mechanisms for the recognition
of surgical action triplets in endoscopic videos. MedIA 78, 102433 (2022) 5, 6, 7



Endora: Video Generation Models as Endoscopy Simulators 11

32. Pan, P., Fan, Z., Feng, B.Y., Wang, P., Li, C., Wang, Z.: Learning to estimate
6dof pose from limited data: A few-shot, generalizable approach using rgb images.
arXiv preprint arXiv:2306.07598 (2023) 5

33. Shen, X., Li, X., Elhoseiny, M.: Mostgan-v: Video generation with temporal motion
styles. In: Computer Vision and Pattern Recognition. pp. 5652–5661 (2023) 6

34. Skorokhodov, I., Tulyakov, S., Elhoseiny, M.: Stylegan-v: A continuous video gen-
erator with the price, image quality and perks of stylegan2. In: Computer Vision
and Pattern Recognition. pp. 3626–3636 (2022) 5, 6

35. Sun, L., Li, C., Ding, X., Huang, Y., Chen, Z., Wang, G., Yu, Y., Paisley, J.:
Few-shot medical image segmentation using a global correlation network with dis-
criminative embedding. CBM 140, 105067 (2022) 4

36. Tian, Y., Pang, G., Liu, F., Liu, Y., Wang, C., Chen, Y., Verjans, J., Carneiro,
G.: Contrastive transformer-based multiple instance learning for weakly supervised
polyp frame detection. In: MICCAI. pp. 88–98. Springer (2022) 6, 7

37. Wang, Y., Yao, H., Zhao, S.: Auto-encoder based dimensionality reduction. Neu-
rocomputing 184, 232–242 (2016) 2

38. Xu, H., Li, C., Zhang, L., Ding, Z., Lu, T., Hu, H.: Immunotherapy efficacy pre-
diction through a feature re-calibrated 2.5 d neural network. Computer Methods
and Programs in Biomedicine 249, 108135 (2024) 1

39. Xu, H., Zhang, Y., Sun, L., Li, C., Huang, Y., Ding, X.: Afsc: Adaptive fourier
space compression for anomaly detection. arXiv:2204.07963 (2022) 6

40. Zhang, Y., Li, C., Lin, X., Sun, L., Zhuang, Y., Huang, Y., Ding, X., Liu, X.,
Yu, Y.: Generator versus segmentor: Pseudo-healthy synthesis. In: MICCAI. pp.
150–160. Springer (2021) 1

41. Zhu, L., Wang, Z., Jin, Z., Lin, G., Yu, L.: Deformable endoscopic tissues recon-
struction with gaussian splatting. arXiv preprint arXiv:2401.11535 (2024) 1


