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Abstract. Self-supervised representation learning has been highly promis-
ing for histopathology image analysis with numerous approaches lever-
aging their patient-slide-patch hierarchy to learn better representations.
In this paper, we explore how the combination of domain specific nat-
ural language information with such hierarchical visual representations
can benefit rich representation learning for medical image tasks. Build-
ing on automated language description generation for features visible in
histopathology images, we present a novel language-tied self-supervised
learning framework, Hierarchical Language-tied Self-Supervision (HLSS)
for histopathology images. We explore contrastive objectives and gran-
ular language description based text alignment at multiple hierarchies
to inject language modality information into the visual representations.
Our resulting model achieves state-of-the-art performance on two medi-
cal imaging benchmarks, OpenSRH and TCGA datasets. Our framework
also provides better interpretability with our language aligned represen-
tation space. The code is available at https://github.com/Hasindri/HLSS.
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1 Introduction

Self-supervised learning (SSL) has showcased remarkable outcomes for vision
tasks [9,3], with recent extensions to medical imaging tasks proving highly suc-
cessful [13], especially given the expensive and difficult nature of medical image
annotation due to necessity of domain-specific expertise knowledge.

In constrast to natural images, medical images contain unique imaging pat-
terns. In clinical studies, it is common to sample multiple gigapixel range image
slides from a single patient, followed by analysis of smaller sub regions of slides,
referred as patches. This creates a patient, slide, patch hierarchy in captured
data where all samples from a single patient correspond to a common diagnosis.

https://github.com/Hasindri/HLSS
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Multiple existing work leverage this hierarchy in the visual modality to learn
self-supervised representations of histopathology images [13,4].

With the recent advancement of vision-text alignment research and highly
transferable vision language models (VLMs) [18,15], multiple histopathology SSL
work go beyond raw visual information, leveraging natural language to learn
more generic representations, zero-shot capabilities, and improved interpretabil-
ity [16,20,17]. However, utilising hierarchy in terms of language has not yet been
done in any recent vision-language SSL work in histopathology, especially given
most of these work are built upon image-text paired datasets manually annotated
or automatically captioned at only patch level [11,7].

In our work, we bridge this gap by exploring hierarchy in both vision and lan-
guage modalities. We propose a novel framework for hierarchical text-to-vision
alignment for language guided visual representation learning named HLSS (Hi-
erarchical Language-tied Self Supervision) which extends the self super-
vised learning objectives across three levels of hierarchy: patient, slide and patch.
In contrast to existing histopathology VLM approaches that require a sample
specific description per each image, we are the first to use a fixed set of text de-
scriptions depicting dataset specific characteristics, for language guidance. First,
we utilise pre-trained LLMs containing extensive world knowledge to extract a
fixed set of visual characteristics flagged as useful for a diagnosis in a given
dataset type, for each level of the hierarchy. Then a text description is gener-
ated per each attribute. Since the three sets of descriptions describe the images
at three different granularities; patch level describes more fine grained features
while patient level describes features related to overall diagnosis; we refer to
them as granular language descriptions. This entire process is automated and is
followed by verification from a human expert in histopathology. Collected text
descriptions are encoded using a CLIP text encoder and the resulting text vec-
tors are used to construct a hierarchical text-to-vision alignment objective which
is combined with a hierarchical vision contrastive objective. The resulting frame-
work, which we named HLSS, learns representations achieving state-of-the-art
performance on downstream medical image classification tasks.

In summary, our contributions can be categorized into three parts: 1) Au-
tomated Generation of dataset specific granular characteristic-description text
pairs that can describe histopathology images at a multitude of levels, 2) Hi-
erarchical text-to-vision alignment for self-supervised representation learning on
histopathology images, 3) A language guided framework that utilise dataset spe-
cific characteristic descriptions instead of sample specific captions. Evaluations
on two downstream histopathology benchmarks, OpenSRH and TCGA, demon-
strate state-of-the-art performance of HLSS.

2 Related Work

Vision Language Models in Histopathology Numerous recent work in
histopathology combine language with self-supervised objectives, mostly bas-
ing off image-text contrastive objectives applied on paired image-caption data
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[11,17,16,20]. This demands sample-specific text captions that are expensive for
medical domains. At the same time, these methods do not explore the hierarchi-
cal relations inherent to the data. To the best of our knowledge, our work is a first
to introduce a hierarchical vision-language representation learning approach.

3 Methodology

In this section, we present our approach, HLSS, that learns language-guided
self-supervised representations for histopathology images that are also inter-
pretable for clinical decision-making. We leverage the inherent hierarchical struc-
ture of histopathology data, across both vision and language modalities, and
construct two novel language-tied self-supervision objectives, Hierarchical Vision
Contrastive (HVC) Loss and Hierarchical Text-to-Vision Alignment (HA) Loss.
Additionally, we propose two architectural components, Positive Pairing Module
(PPM) and Cross-Modal Alignment Module (CAM) for efficient implementation
of our objectives. In the following sections, we discuss some key characteristics
of histopathology data, layout the architecture of our framework, introduce our
two proposed learning objectives in detail, and describe our overall framework.
To the best of our knowledge, in the histopathology imaging domain, we are the
first to connect natural language with hierarchy aware self-supervised learning.

3.1 Background

Histopathology domain vision tasks generally involve hierarchical data extrac-
tion [13], resulting in an inherent hierarchy for the visual information. A single
Whole Slide Image (WSI), referred as a slide, could span gigapixel scales, moti-
vating most computer vision approaches to use sub-sampled fields-of-view (e.g.,
256×256 pixels region), referred as patches. These patches could belong to a
single slide or different slides from the same patient. Overall, this results in an
inherent three-tier data hierarchy. Interestingly, each level contains some unique
visual characteristics which can also be described sufficiently using natural lan-
guage.

3.2 Architecture

Our HLSS processes patches, x ∈ R(H,W,C) where H = W = 224 and C = 3,
to output representations, z ∈ RD where D = 1024, which are used in down-
stream tasks. The inherent data hierarchy allows sampling patches belonging
to individual levels. Therein, our setup processes ns ∗ np ∗ na patches at each
iteration, where ns slides belong to a common patient, np patches are sampled
from each slide, and data augmentations provide na views per patch. A view
here refers to a visually augmented version of a patch. We use a ResNet-50 [10]
as our visual encoder with CLIP pretraining [18], FV to obtain z ∈ RD. Our
proposed positive pairing module (PPM) projects z to language guided repre-
sentation spaces motivated from [19] obtaining features specific to each level as
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Fig. 1. Overview of HLSS Architecture.

z′patient, z
′
slide, z

′
patch. These features are processed by our proposed hierarchical

vision contrastive (HVC) objective to provide the first learning signal. Addi-
tionally, granular textual descriptions relevant to each hierarchy are processed
through a language encoder from CLIP, FL to obtain language modality features,
tpatient, tslide, tpatch. Our cross-modal alignment (CAM) module outputs modified
features t′patient, t

′
slide, t

′
patch which processed by our Hierarchical Text-to-Vision

Alignment (HA) objective, providing a second learning signal. We illustrate this
overall architecture in Fig. 1.

3.3 Hierarchical Vision Contrastive Objective

Self-supervised contrastive objectives commonly operate on features that are pro-
jected to a secondary feature space, which is considered to learn more generic
representations [1]. Given the hierarchy of our data, we propose distinct sec-
ondary feature spaces for each level. Additionally, motivated by [19], we propose
language-guided construction of these feature spaces. This combined setup is
implemented in our proposed Positive Pairing Module (PPM). The resulting hi-
erarchical representations are processed separately using our hierarchical vision
contrastive (HVC) loss to provide a suitable learning signal.
Positive Pairing Module We first separate visual encoder outputs, z, to in-
dividual levels and process each through level-specific projection layers. These
projection layers are implemented as linear layers and output z′patient, z

′
slide, z

′
patch

where each z′ ∈ R(m,128) with m equal to (ns · np · na), (np · na), and na re-
spectively. The projection layers are initialized with textual vectors (extracted
from FL) such that each axis of the 128-dimensional feature space corresponds
to some text description of a histopathology characteristic (details in Sec 3.4).
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Motivation behind using a different projection layer per each level is to learn a
separate secondary feature space.
Loss Definition Note how each z′ above corresponds to more than one patch.
Let us refer to features of a single patch as z′i. Given these projected z′i, we
consider z′i of common levels positives and others negatives, and we apply a
contrastive objective from [14],

Lcon(zi, Zpi, Z) =
1

|Zpi|
∑

zk∈Zpi

log
exp (zi · zk/ τ)∑

zj∈Z\{zi} exp (zi · zj/ τ)
(1)

that supports multiple positives, where Zpi is the set of positives of zi (ex-
cluding zi) and Z is the set of all z′ respectively. Here each of z′patient, z

′
slide, z

′
patch

corresponds to more than one patch (i.e. ns · np · na, np · na, and na patches re-
spectively) while zi in Eq. 1 refers to features of a single patch. Applying this
loss at each hierarchical level we obtain three different objectives,

LPatch =
∑

zi∈z′patch
Lcon(zi, z

′
patch\{zi}, Z) (2)

LSlide =
∑

zi∈z′slide
Lcon(zi, z

′
slide\{zi}, Z) (3)

LPatient =
∑

zi∈z′patient
Lcon(zi, z

′
patient\{zi}, Z) (4)

We combine these terms to define our first training objective HVC loss as,

LHVC = LPatch + LSlide + LPatient (5)
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Fig. 2. We illustrate the operations within our proposed Positive Pairing Module (left)
and Cross-Modal Alignment Module (right).

3.4 Hierarchical Text-to-Vision Alignment

Our second training objective focuses on explicit alignment of cross-modal rep-
resentations. We utilize a pretrained large language model (LLM) that contains
both world knowledge and domain specific awareness to generate descriptions of
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visual characteristics corresponding to each level of our hierarchy. These gener-
ated descriptions are additionally verified by human experts (histopathology spe-
cialists) to ensure both their meaningfulness and interpretability when proposing
diagnoses in downstream tasks.
Granular Language Descriptions We prompt ChatGPT in a multi-stage
manner to generate a large set of visual descriptions which is reduced to 128
characteristics per level by eliminating redundancy and invalid responses manu-
ally (with human expert supervision). Each characteristic would be represented
by 4 natural language descriptions.
Cross-Modal Alignment Given our language dataset of medical characteristic
descriptions, we utilize our text encoder FL to process these descriptions and
extract language embeddings.The averaged embedding (across four descriptions)
of each characteristic, tpatient, tslide, tpatch is calculated, where each t ∈ R(128,D)

with D = 1024. For a given patch, using its visual embedding z we select a best
matching text embedding t′i = argmaxtk∈ti⟨tk, z⟩ where ⟨·, ·⟩ is cosine-similarity
and tk ∈ ti indexes along the characteristic (128) dimension with tk ∈ RD.
Hierarchical Alignment Objective We utilize the language embeddings t′i
output from CAM to enforce distillation into our visual embeddings, z. Therein,
our hierarchical alignment (HA) loss is defined using a KL-divergence loss,

LHA = LKL(z, t
′
patient) + LKL(z, t

′
slide) + LKL(z, t

′
patch) (6)

where LKL applies KL-divergence loss with suitable softmax normalization. Here,
the KL divergence between the most aligning text vector and the visual repre-
sentation is calculated using the same z in all levels, as unlike the text hierarchy
which is formed of separately curated granular descriptions per each level, the vi-
sual hierarchy is always formed on patch sized views. We traverse through visual
hierarchy by altering the count of positively paired patches based on a common
origin at each level.Therefore, our overall self supervised learning objective can
be summarised as,

LHLSS = LHVC + LHA (7)

4 Experiments

4.1 Experimental Setup

Datasets We perform experiments on two benchmark histopathology image
datasets: OpenSRH [12] and TCGA. OpenSRH (Stimulated Raman Histology)
is a public dataset of clinical SRH images of 300+ brain tumor patients with
classes consisting of normal brain tissue and 6 different brain tumor diagnoses.
In TCGA brain cancer dataset, we utilise TCGA-LGG and TCGA-GBM subsets
containing brain tumor samples.
Training We train for 40000 epochs at batch size 32 (patient count) using
AdamW optimizer with a learning rate of 0.001 and a cosine decay scheduler
after warmup in the first 10% iterations. We use ns = np = na = 2 during
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Table 1. Evaluation on SRH Dataset: Baseline results are reproduced on the
publicly available OpenSRH dataset under conditions similar to HLSS.

Method Patch Classification Slide Classification Patient Classification

Supervised [13] 88.9 89.0 93.9

SimCLR [5] 81.0 82.1 87.8
SimSiam [6] 80.3 81.4 86.0
BYOL [8] 83.5 84.3 90.5
VICReg [2] 82.1 83.4 87.4
HiDisc [13] 82.2 87.6 88.3
HLSS (ours) 84.1 89.5 91.7

Table 2. Evaluation on TCGA Dataset.
Method Patch Classification Slide Classification Patient Classification

Supervised [13] 85.1 88.3 88.3

SimCLR [5] 77.8 83.0 80.7
SimSiam [6] 68.4 77.2 76.6
BYOL [8] 80.0 84.1 83.1
VICReg [2] 75.5 80.8 77.0
HiDisc [13] 83.1 85.1 83.6
HLSS (ours) 89.7 92.9 87.9

training. Temperature τ is set to 0.7. Other hyperparameters follow standard
settings from [13].
Evaluation K Nearest Neighbor (kNN) classification is used to evaluate down-
stream performance. During evaluation, the pretrained visual backbone is frozen
and representations for train and test splits are computed. The class labels of k
Nearest Neighbors of the training data is used to predict the class of a given vali-
dation patch. Slide and patient level metrics are reported by average pooling the
patch level prediction scores of component patches of the given slide or patient.
We use all patches from OpenSRH and only 400 randomly loaded patches per
slide from TCGA for evaluation. The latter limitation is due to the large slides
in TCGA data. We report kNN classification accuracy metric per each task.

4.2 Results Comparison

We first present our results on the OpenSRH dataset in Table 1. Our approach
outperforms all prior work by a clear margin while even surpassing supervised
pretraining settings for Slide Classification. We next evaluate on TCGA dataset
and report these results in Table 2. HLSS outperforms all prior work achieving
state-of-the-art results. We take these results as indication for strong represen-
tation learning ability of HLSS.

4.3 Ablations

We perform all ablations on OpenSRH dataset following the same self supervised
pretraining stage followed by kNN evaluation.
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Table 3. Ablation on SSL Objectives.
Method Loss Patch Accuracy Slide Accuracy Patient Accuracy

HiDisc HiDisc 82.2 87.6 88.3
Ours HVC 82.6 89.5 91.7
Ours HLSS 84.1 89.5 91.7

Table 4. Ablation on Hierarchical Text Integration.

Method Loss Vision
Hierarchy

Text
Hierarchy

Patch
Accuracy

Slide
Accuracy

Patient
Accuracy

HiDisc HiDisc patient none 82.20 87.55 88.33
Ours HVC patient patient 81.9 89.11 90.0
Ours HVC patient slide 81.23 86.53 86.67
Ours HVC patient patch 78.34 84.97 85.0

Table 5. Ablation on Granular Language Descriptions.

Method Loss Text
Hierarchy

Patch
Accuracy

Slide
Accuracy

Patient
Accuracy

Ours HVC non-granular 81.9 89.11 90.0
Ours HVC granular 82.55 89.49 91.67

SSL Objectives In the first ablation study, we analyse the contribution of each
loss component to the performance of the model. Refer Table 3. HLSS with only
HVC loss surpass HiDisc performace. Hierarchical projection layers initialised
with granular text vectors, injecting language information to the lower dimen-
sional spaces where hierarchical contrastive loss operates, is the contributing
factor in this situation. When HVC loss is combined with a vision-text align-
ment loss for patch representations, it furthur improves the patch representations
as observed in the results.
Hierarchical Integration of Text Integration of text hierarchically to the
self-supervised setup improves performance when used at all levels as illustrated
by results in Table 4. This study was conducted by using only the HVC loss
component.
Granular Descriptions Here, we study the effect of using granular descriptions
separately generated for each hierarchical level against using a generic set of
textual descriptions repeated across all three levels of hierarchy. Refer Table 5.

4.4 Interpretability

Representations learnt by a language guided approach are more interpretable.
We obtained a set of cancer markers specific for each tumor grading in OpenSRH
from a histopathologist. These markers were not used during training. A text
embedding was derived by averaging the CLIP text embeddings of 4 language
descriptions generated via an LLM per each marker. Results demonstrate the
close alignment between an image representation with the descriptions of the
markers from the ground truth class. More details are included in supplementary.
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5 Conclusion

We introduce a novel hierarchical language-tied SSL framework for histopathol-
ogy by proposing two hierarchical SSL objectives. Our approach compliments
a hierarchical vision approach by additionally exploring language hierarchy. In
contrast to prior vision-text alignment SSL work that require sample-specific
image captions, our model achieves state-of-the-art performance using a set of
dataset-specific text descriptions.
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