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Abstract. Misfolded tau and amyloid-β (Aβ) are hallmark proteins of
Alzheimer’s Disease (AD). Due to their clinical significance, rich datasets
that track their temporal evolution have been created. For example, ADNI
has hundreds of subjects with PET imaging of both these two proteins. In-
terpreting and combining this data beyond statistical correlations remains
a challenge. Biophysical models offer a complementary avenue to assimi-
lating such complex data and eventually helping us better understand
disease progression. To this end, we introduce a mathematical model that
tracks the dynamics of four species (normal and abnormal tau and Aβ)
and uses a graph to approximate their spatial coupling. The graph nodes
represent gray matter regions of interest (ROI), and the edges represent
tractography-based connectivity between ROIs. We model interspecies in-
teractions, migration, proliferation, and clearance. Our biophysical model
has seven unknown scalar parameters plus unknown initial conditions for
tau and Aβ. Using imaging scans, we can calibrate these parameters by
solving an inverse problem. The scans comprise longitudinal tau and Aβ
PET scans, along with MRI for subject-specific anatomy. We propose
an inversion algorithm that stably reconstructs the unknown parameters.
We verify and test its numerical stability in the presence of noise using
synthetic data. We discovered that the inversion is more stable when
using multiple scans. Finally, we apply the overall methodology on 334
subjects from the ADNI dataset and compare it to a commonly used
tau-only model calibrated by a single PET scan. We report the R2 and
relative fitting error metrics. The proposed method achieves R2 = 0.82
compared to R2 = 0.64 of the tau-only single-scan reconstruction.
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1 Introduction

Tau inclusions and amyloid-β plagues characterize Alzheimer’s disease [1–5].
Longitudinal Tau-PET and Aβ-PET scans [9] and other biomarkers suggest strong
correlations between the two proteins. It is believed that Aβ accelerates misfolded
tau aggregation [6–8]. Here we introduce a phenomenological mathematical model
and propose a method to assimilate it with longitudinal PET scans. The model
allows us to systematically integrate subject-specific clinical information and
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explore spatio-temporal patterns using only a handful of parameters. In Figure 1
we summarize the main components of our approach.

Contributions: (i) We introduce a coupled tau-Aβ biophysical model, which is
a system of coupled ordinary differential equations. (ii) We present a gradient-
based inversion algorithm to assimilate the model with longitudinal Tau-PET and
Aβ-PET scans. (iii) We investigate the invertibility, forecast skill of the inversion
scheme using synthetic data. We found that using multiple scans leads to a
more stable inverse problem. (iv) We evaluate the proposed model on data from
334 subjects from the ADNI clinical dataset [20]. We found that the multi-scan
assimilated coupled problem improves significantly the state of the art.

Related work: There are numerous works that use machine learning to integrate
all the subject-specific data, e.g. [10,11] and the references therein. There are also
several works that quantify the cumulative tau/Aβ abnormality using interpola-
tion/signal processing techniques [12–15,35]. Our approach is motivated by the
temporal-ordering abnormal tau and discussion in those studies. Model-driven
assimilation of longitudinal multimodal scans in the context of AD while account-
ing for the coupled interactions between tau and Aβ is a novel approach, to our
knowledge. The graph-based approximation of spatial spreading was introduced
in [18, 19] and has been used by many groups. Tau-only biophysical models
include the Fisher-Kolmogorov (FK) and the Heterodimer Fisher-Kolmogorov
(HFK) models [25,33,34], and are typically calibrated using one scan. In a recent
study [22] uses machine learning on tau/Aβ data to stratify subjects and to fit
different tau-models to different subject cohorts using a tau-only model.

2 Methodology

Our model leverages several previous works on assimilating tau-only models
[24–26, 33, 34] with medical images. The basic idea is to model the per-ROI
aggregate evolution of tau/Aβ and use the ROI graph structure to capture spatial-
dependencies. Using diffusion weighted images we can extract the connectivity
between N different ROIs with adjacency matrix D. We follow the exact same
method described in [33], but any other method can be used for this purpose.

Given D, we define the graph Laplacian L = diag
∑N
j=1,j 6=i[D(w)]ij −D(w) [27]

to model spatial spreading of abnormal tau and Aβ.
For each ROI (graph node), we track the time evolution of four species: the

abnormal tau and Aβ, ca(t) and ba(t) respectively; and the normal tau and Aβ,
cn(t) and bn(t) respectively. Here t represents time from the onset of the disease,
the disease age. We remark that t is unknown. We discuss a way to address this
further below. We use the boldface ca(t) and ba(t) to indicate the vector values
for all ROIs and use a similar notation for Aβ. Both normal and abnormal scores
are normalized to [0, 1]. Next we describe how we define them.

First, we preprocess the Tau-PET and Aβ as shown in Figure 1(A). For
each subject, we map the chronologically first T1 MRI to the parcellated MUSE
atlas [29] using FSL [37] and define the subject-specific ROIs. Then, Tau-PET
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Fig. 1: Summary of the overall approach. (A) Data preprocessing to generate the
data for the model calibration. Given a parcellated atlas and the subject MRI,
we parcellate the subject image into atlas-defined ROIs using image registration.
Following [33], we use the Maximum Mean Discrepancy (MMD) score to quantify
the distributional distance between an ROI and the cerebellum tau/Aβ. (B)
Our objective is to fit an ODE model to observed tau / Aβ MMDs. We use
an auxiliary disease-age model to define the time t of the observed Tau-PET /
Aβ-PET scans. Here tc1 indicates the first tau PET scan in disease-age t, defined
in Section 2. tc2 indicates the second tau PET scan. Similarly tb1 and tb2 define the
time of Aβ scans. Once the mathematical is calibrated or assimilated with the
scans we could used to forecast future tau scores and disease progression.

and Aβ-PET data are normalized by the median value of the tau uptake in the
cerebellum. We define ROI abnormality scores as follows: By viewing voxelwise
tau values as samples from a distribution, we use the maximum mean discrepancy
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(MMD) [30] metric to define a distance between the tau/Aβ distribution of the
ROI and the cerebellum. Let µc,i denote the Tau MMD for the ith parcel. Then
the abnormality score is given by by dic = 1− e−µc,iσ, where dic is tau observation
at the ith parcel in the graph, and σ = 0.3 is a hyperparameter. Similarly, we
define µb,i and dib for Aβ. Normal protein scores are also defined to be in [0, 1]
but they are not observable in the data.

The first challenge is that in order to define our ODE solution we need initial
conditions and the time since the disease onset, the so called “disease age”—which
is unknown. Several groups have proposed methods to estimate it. We use the
work from [35] in which the authors propose a Disease Progression Score (DPS)
that extracts a disease ages from scans. For each subject i, the disease age for
scan j, is denoted by tij and is assumed to be given by tij = aitij + bi, where
tij is the actual chronological time of scan j. Then the disease age is mapped
to a global, per subject, tau abnormality score using a logistic function with
common parameters for all subjects. Then logistic regression is used to determine
the age-to-tau parameters as well as the ai, bi for each subject i. Then tij is
normalized by using a shifted sigmoid function where the shift is the cohort mean
age. This normalized value indicates the disease age t and is the time variable
used in our ODE model. We remark that this normalization is critical since
absolute chronological times are meaningless.

A natural question is why not using the first scan and then defining t as
the relative time based on the first scan. This approach was tested for tau-only
models in [21,33,34] and it does not work because the observational time horizon
is too short to stably reconstruct the dynamics of disease progression.

Tau-Aβ HFK Model: The Tau-Aβ HFK is given by the equation below with
ca(t), cn(t),ba(t),bn(t) ∈ RN+ × (0, T ]:

Abnormal tau:
∂ca
∂t

= −κcLca + ρccacn − γcca + ρbccnba, (1a)

Normal tau:
∂cn
∂t

= −ρccacn − ρbccnba, (1b)

Abnormal Aβ:
∂ba
∂t

= −κbLba + ρbbabn − γbba, (1c)

Normal Aβ:
∂bn
∂t

= −ρbbabn. (1d)

The initial conditions (IC) are given ca(0) = pc, cn(0) = 1− pc, ba(0) = pb and
bn(0) = 1 − pb, which are parameterized by pc and pb. Equation (1) defines
the following mechanism: The abnormal tau ca spreads from the IC regions to
the whole graph due to L scaled by diffusivity constant κc ∈ R+. Abnormal tau
causes the transition of normal cn into abnormal via the ρccacn and ρc ∈ R+.
We also account for clearance of abnormal tau ca using the −γcca and γc ∈ R+.
We assume that abnormal Aβ catalyzes tau growth [7,8,25] and represent this by
combining Aβ with healthy tau in the term ρbccnba where ρbc ∈ R+, and normal
tau decreases by subtracting the corresponding amount. We describe propagation
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of Aβ similarly with parameters κb, ρb and γb ∈ R+ The ODE model is defined
for t ∈ (0, T ].

Data assimilation: We define an inverse problem using the following subject-
specific objective function:

J =
1

sc

sc∑
i

‖ca(tci )− dc,i‖22+
1

sb

sb∑
i

∥∥ba(tbi )− db,i
∥∥2

2
+λ1 log(1−pc)+λ2 log(1−pb).

where dc,i and db,i are the ith PET-derived tau and Aβ ROI MMD scores. ca(tci )
and ba(tbi ) is the ODE solution at t = tci and t = tbi . The regularization parameters
λ1 > 0 and λ2 > 0 ensure that θp < 1 elementwise. To further regularize the
reconstruction of the initial conditions and assuming that the abnormal proteins
originate in specific locations, we introduce the sparsity constraints for pc and
pb: ‖pc‖0 = smax,c and ‖pb‖0 = smax,b where ‖z‖0 counts the number of non-
zeros of input vector z. smax,c and smax,b are two constants. We define θ7 :=
{κc, ρc, γc, ρbc, κb, ρb, γb} ∈ R7 and θp := {pc,pb} ∈ R2N . Then the unknown
parameters are θ := {θ7,θp} ∈ R7+2N comprising scalar ODE coefficients and
the initial conditions for the abnormal proteins.

Then the inverse problem is defined as follows:

min
θ>0
J (θ) subject to:

Equation (1) holds and ‖pc‖0 = smax,c, ‖pb‖0 = smax,b.
(2)

Here J is an implicit function of θ through the solution of Equation (1). We use
a gradient/adjoint-based method [38] to solve Equation (2). Let L denote the
Lagrangian and αca, αcn, αba, and αbn adjoint variables for ca, cn, ba and bn
respectively. The adjoint equation is given

∂αca
∂t

= κcL
ᵀαca + ρccn(αcn −αca) + γcαca + ξca, (3a)

∂αcn
∂t

= (ρcca + ρbcba)(αcn −αca), (3b)

∂αba
∂t

= κbL
ᵀαba + ρbbn(αbn −αba) + γbαba + ρbccn(αcn −αca) + ξba, (3c)

∂αbn
∂t

= ρbba(αbn −αba), (3d)

αca(T ) =

{
dc,sc − ca(tcsc) if tcsc = T

0 otherwise
, (3e)

αba(T ) =

{
db,sb − ba(tbsb) if tbsb = T

0 otherwise
, (3f)

where Lᵀ denotes matrix transpose of L, ξca = 1
sc

∑sc
i (ca(t)− dc,j)δ(t− tci )(1−

δ(t − T )) and ξba = 1
sb

∑sb
i (ba(t) − db,j)δ(t − tbi)(1 − δ(t − T )); where δ(0) =

1, δ(x) = 0,∀x 6= 0. ∂θJ is computed as follows: ∂L
∂κc

=
∫
αᵀ
caLcadt,

∂L
∂ρc

=
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(αcn − αca)ᵀ(cacn)dt, ∂L

∂γc
=
∫
αᵀ
cacadt,

∂L
∂ρbc

=
∫

(αcn − αca)ᵀbacndt, ∂L
∂κb

=∫
αᵀ
baLbadt,

∂L
∂ρb

=
∫

(αbn − αba)ᵀ(babn)dt, ∂L
∂γb

=
∫
αᵀ
babadt,

∂L
∂pc

= αcn − αca +
λ1

pc−1 and ∂L
∂pb

= αbn − αba + λ2

pb−1 . To update θ, we first solve Equation (1), and

then solve Equation (3) backward in time, i.e., in t ∈ [T, 0]; then given forward
and adjoint trajectories we can compute ∂θJ and use a gradient descent scheme.
We use a quasi-Newton method and use the algorithm in [33] to handle sparsity
constraints.

Numerical discretization of forward and adjoint problem: We use the
LSODA ODE solver [36]. We use a limited memory quasi-Newton L-BFGS
algorithm [28] to solve the optimization problem. We initialize θ = 0. The
regularization parameters λ1 and λ2 is chosen to ensure pc < 1 and pb < 1. We
set smax,c = 5, smax,b = 10. Further, we impose θ7 ∈ [0, 20]

7
.

3 Results

The proposed data assimilation scheme works with an arbitrary number of
scans for each biomarker. We investigate four algorithmic variants categorized
by (1) model structure: tau-only vs tau-Aβ, and (2) number of scans used in
the reconstruction: single vs many. We term these variants as Tau-only Single
Scan (short as Tau-1S), Tau-only Multiple Scans (Tau-MS), Tau-Aβ Single Scan
(TauAβ-1S) or Tau-Aβ Multiple Scans (TauAβ-MS). We evaluate these variants
using synthetic and clinical data. We seek to answer the following questions:

(Q1) Is the inversion scheme numerically accurate and stable? To answer this,
we generate synthetic data using Equation (1), pollute them with artificial noise,
and reconstruct the parameters θ by solving Equation (2).
(Q2) What is the qualitative and quantitative performance in clinical data? To
answer this, we evaluate the methods using subjects from the ADNI dataset.

(Q1) Testing inversion algorithm: We verified the ability of the inversion
algorithm to reconstruct θ in the absence of modeling errors using synthetically
generated data. The observation data is generated by Equation (1) with specified
θ. In particular we use initial conditions θp with nonzero values at the entorhinal
cortex, as it is typically done in biophysics-based simulations [25]. The ODE coef-
ficients θ7 are random. For the TauAβ-1S and TauAβ-MS assimilation scenarios
we performed 100 synthetic inversions/scenario for which we report statistics.
TauAβ-1S uses a single tau (and a single Aβ) observation at t = 0.95 while
TauAβ-MS uses four tau/Aβ observations at t = [0.8, 0.85, 0.9, 0.95]. Different
noise levels (0%–30%) are added to the observations. Further, we test the forecast
skill of the model at t = 1.0 that is beyond the observational time horizon
(t = 0.95). We measure performance using ed = ‖ca − dc‖2 /‖dc‖2. We report
the results of this experiment in Figure 2(A). We conclude that using more scans
results in more accurate and more stable, in the presence of noise, results both
in assimilating observed data, but also in forecasting disease progression.
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(A) (B)
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Fig. 2: (A) Synthetic inversion. We generate observations from tau-Aβ HFK
model with random parameters. Single observation takes at t = 0.95, while
multiple observations take from t = [0.8, 0.85, 0.9, 0.95]. Prediction is set at t = 1.
(B) Clinical inversion. We report the R2 score for four assimilation scenarios
applied on 334 ADNI subjects. Each dot in the scatter plot corresponds to a
specific ROI for which, after assimilation, we average the scan MMD / model
MMD across the subjects, and compute the R2 value. The red line represents a
fitted affine function to the scatters. (C) Visualization of inversion. We select
five subjects with largest total abnormal tau (sum over ROIs). We report results
for one CN subject, two MCI, and two AD subjects. From left to right, we show
the observation data and results from the four assimilation scenarios.
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Table 1: Performance in different Alzheimer’s groups. For each algorithm variant,
we compute the subject-wise R2. The first column of each method demonstrates
what is the percentage of subjects performs the best under the algorithm variant.
The second column of each method shows the averaged R2 over subjects. Overall,
the method using Tau-Aβ Multiple scans performs the best.
Group Tau-only Single Scan Tau-only Multiple Scans Tau-Aβ Single Scan Tau-Aβ Multiple Scans

% win R2 % win R2 % win R2 % win R2

CN 0 4.70E−1 1.05 4.55E−1 20.52 5.81E−1 78.42 6.55E−1
MCI 1.59 4.86E−1 4.76 4.86E−1 14.28 5.65E−1 79.37 6.61E−1
AD 5.56 4.72E−1 0 4.73E−1 33.33 5.14E−1 61.11 6.14E−1

(Q2) Clinical results: We use MRI, Tau-PET, and Amyloid beta PET data
from ADNI dataset [20]. We have 334 subjects that have both Tau-PET and Aβ-
PET images (168 female and 166 male). The age mean(std) is 72.29(7.24). The
acquisition time spans from 10/24/2005 to 01/12/2023. There are 190 Cognitive
Normal (CN), 126 Mild Cognitive Impairment (MCI) and 18 Alzheimer’s Disease
(AD). The data was prepared using the workflow described in Section 2.

We evaluate the four different assimilation scenarios usingR2(d, c) =
∑

i(di−ci)
2∑

i(di−d̄)2
,

where d̄ is the mean of entries of d. The higher the R2, the better the model
fits the data. We present the population level R2 for four algorithm variants in
Fig. Figure 2(B). For each algorithm, we run the inversion for all 334 subjects and
reconstruct θ and the corresponding ca(t). We average the model results across
the subjects and obtain c̄a. We repeat the same process for observations and
obtain d̄c. The population R2 is computed Using c̄a and d̄c. Overall, TauAβ-MS,
i.e., using a strongly coupled model and multiple scans, performs best. Notice
that the Tau-1S model, as presented in [33], demonstrates superior performance
compared to the model in [22,25]. We further investigate the forecast ability of
the proposed algorithms for the same subjects. In this experiment, the last tau
scan is removed from the data used during assimilation. The R2 figures are in the
supplementary and the conclusion remains the same: TauAβ-MS performs best.

Finally, we report per-subject R2. We compare the R2 values obtained with
the different methods and compare them in Table Table 1. TauAβ-MS “wins”,
i.e., has higher R2 in 78.42% of the cases among CNs, 79.37% among MCIs, and
61.11% among AD subjects. In the same table, we also present the averaged R2

over subjects within each group. Qualitatively, we evaluate five subjects from
ADNI dataset in Figure 2(C). The first is a CN subject, followed by two MCI
and two AD subjects. These are selected because they have the largest global tau
in our cohort. We also present the quantitative evaluation of these five subjects
in a table in the supplementary material.

4 Conclusions

We presented a Tau-Aβ HFK model to simulate tau and amyloid-β propagation
in human brains. The inversion algorithm is proposed to estimate the operator
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parameters and ICs in the model to fit clinical data. We test four algorithm
variants. We find that the Tau-Aβ model performs better than tau-only bio-
physical model. Also, using our synthetic experiments, we showed that given
more observation scans, the inversion algorithm results in more accurate and
more stable reconstructions. Qualitative and quantitative evaluation using ADNI
subjects reaches similar conclusions. Our approach has also several limitations.
Admittedly the coupled model is too simple to unveil the complex links between
the tau and Aβ dynamics. The model also does not include atrophy, which is a
significant additional biomarker that is strongly correlated with tau aggregation.
Importantly, the clinical significance of these preliminary results is to be seen.
Our immediate plan is to check whether the model can help predict disease
transition from CN to MCI or AD.
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