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Abstract. Tagged magnetic resonance imaging (MRI) has been success-
fully used to track the motion of internal tissue points within moving
organs. Typically, to analyze motion using tagged MRI, cine MRI data
in the same coordinate system are acquired, incurring additional time
and costs. Consequently, tagged-to-cine MR synthesis holds the poten-
tial to reduce the extra acquisition time and costs associated with cine
MRI, without disrupting downstream motion analysis tasks. Previous ap-
proaches have processed each frame independently, thereby overlooking
the fact that complementary information from occluded regions of the
tag patterns could be present in neighboring frames exhibiting motion.
Furthermore, the inconsistent visual appearance, e.g., tag fading, across
frames can reduce synthesis performance. To address this, we propose an
efficient framework for tagged-to-cine MR sequence synthesis, leverag-
ing both spatial and temporal information with relatively limited data.
Specifically, we follow a split-and-integral protocol to balance spatial-
temporal modeling efficiency and consistency. The light spatial-temporal
transformer (LiST2) is designed to exploit the local and global attention
in motion sequence with relatively lightweight training parameters. The
directional product relative position-time bias is adapted to make the
model aware of the spatial-temporal correlation, while the shifted win-
dow is used for motion alignment. Then, a recurrent sliding fine-tuning
(ReST) scheme is applied to further enhance the temporal consistency.
Our framework is evaluated on paired tagged and cine MRI sequences,
demonstrating superior performance over comparison methods.

1 Introduction

In muscle mechanic-related medical imaging applications, assessment of defor-
mation patterns of internal tissues is a crucial step that translates image-related
information to physical spaces. The need for more accurate estimations is essen-
tial in both imaging research and clinical practice. Tagged magnetic resonance
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imaging (MRI) [18] with spatially encoded tag patterns is among the most popu-
lar modalities for capturing internal motion in terms of deformed image patterns,
which has received widespread applications in studying the motion of internal
muscles, such as the myocardium [16] and the tongue [24,23].

However, due to the intrinsic low anatomical resolution of tagged MRI, an
additional set of cine MRI scans with higher resolution are often acquired to
serve as a matching pair that specifies anatomical structures in detail [17]. They
are often used in localization, segmentation, and constraining of the tagged im-
ages [7], albeit at the cost of extra time and expense. Recent studies propose
various methods for tagged-to-cine MR translation [11,13,12,9], aiming to gen-
erate cine MRI sequences from tagged MRI data. By utilizing these generated
cine MRI images, the need for acquiring additional cine MRI scans is obviated,
thereby almost reducing acquisition time by a half, while maintaining the work-
flow for subsequent motion estimation analyses. However, the existing meth-
ods [11,13,12,9] fail to fully exploit the video nature of collected data since they
process frames independently, disregarding the complementary information em-
bedded in neighboring frames, which has been well demonstrated in nature video
restoration [20,5,8]. In addition, the temporal flickering with inconsistent visual
appearance in neighboring frames can distract the viewers and result in incoher-
ent results for the subsequent motion analysis. Notably, the fading of tags across
input frames can further reduce synthesis coherence.

A key aspect of video restoration methods lies in designing components to
realize alignment across frames for exploiting inter-frame complementary infor-
mation. Some sliding window-based methods [20,15] only use CNNs without
explicit alignment. These methods generally input a short video section to ex-
tract temporal information implicitly, but their performance tends to be sub-
optimal. Optical flow [19] or deformable convolution [26] is usually required, at
the cost of a more complex computational architecture and increased time ex-
pense. Some other methods are based on a recurrent algorithm [1]; however, they
suffer from significant performance drops when processing either short or long
videos [8]. Recently, vision transformer (ViT) has become a promising alterna-
tive for attaining long-range receptive fields [8]. However, its long-input setting
can significantly reduce the available training inputs, and its costly self-attention
mechanism cannot be adequately supported by the limited data.

To address the aforementioned challenges, in this work, we propose a split-
and-integral protocol to balance spatial-temporal modeling efficiency and consis-
tency. Specifically, we propose a light spatial-temporal transformer (LiST2) that
adapts the image-based LightViT [4] to the video sequence for efficient local and
global spatial-temporal modeling. We equip it with a directional product relative
position-time bias to make the model aware of the spatial-temporal correlation.
In addition, the shifted window for local patch design is also applied to address
the motion-related mismatch in the boundary regions of neighboring frames.
Therefore, our LiST2 inherits the efficiency of sliding window-based methods,
while being able to explicitly explore spatial-temporal correlations. However,
ensuring consistency at intersections remains uncertain. To address this, we pro-
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Fig. 1: Illustration of our video tagged-to-cine synthesis framework. Left: the
UNet model with LiST2 module. Right: ReST phase tuning with overlap loss.

pose a recurrent sliding fine-tuning (ReST) scheme, which is regularized by the
overlap-consistent loss. With this add-on step, we are able to combine the slid-
ing window model with a recurrent algorithm, which strengthens the interaction
between temporal sections without compromising spatial quality.

The main contributions of this work are three-fold:

• To our knowledge, this is the first attempt at tagged-to-cine MRI sequence
synthesis, which explicitly explores the complementary cross-frame information.

• We developed a light spatial-temporal transformer with position-time bias and
shifted window to achieve efficient motion modeling with relatively limited data.

• We further explored a recurrent sliding scheme as a fine-tuning phase to
strengthen temporal consistency between neighboring sliding sections.

Both quantitative and qualitative evaluation results from 20 healthy controls
with a total of 3,774 paired slices of tagged and cine MRI show the validity of our
proposed LiST2 + ReST framework and its superiority to conventional image
and long-video-based translation methods.

2 Methodology

Given the paired tagged and cine MRI sequences, we adopt a split-and-integral
protocol with LiST2 and ReST to balance data efficiency and temporal consis-
tency. Following the temporal sliding windows [20,21], we segment a long video
sequence X into several overlapping sections xs ∈ RH×W×T , each with a fixed
length T , where s indexes the section. We empirically set T to consist of five
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consecutive frames {xs
t ∈ RH×W×1}Tt=1 [20], and we use a step size of T//2

frames6 to address the correlation at intersections in our ReST phase.
Following the conventional approach used in ViT for video restoration and

processing [8,10], each frame xs
t is processed by two layers of shared 2D convo-

lution, serving as the encoder. This facilitates efficient modeling of neighboring
correlations to extract features fst ∈ RCl×Hl×Wl×1 after the l-th layer, followed
by applying an attention scheme. Importantly, we employ a shared decoder ar-
chitecture based on UNet, incorporating deconvolution layers and skip connec-
tions. This decoder is used to synthesize the corresponding cine MRI sequences
{c̃st ∈ RH×W×1}Tt=1, approximating the ground truth {c̃st}Tt=1.

2.1 Light Spatial-Temporal Transformer (LiST2)

Directly modeling spatial-temporal correlations among any two Cl-dim vectors in
H×W plane of fst can impose quadratic complexity of O(H2

l W
2
l T

2). The recent
efficient ViTs [4,25,2] usually adopt a local patch design to compute local self-
attention and correlate global patches with CNNs or anchored global attention.
We further extend the general idea to the 3D volume sequence. Specifically, in
the H ×W plane, the feature fst is divided into non-overlap local patches with
the size of MH ×MW . For a spatial-temporal patch, we concatenate T frames to
have N = [(MH×MW )×T ] tokens, which are processed by the linear projections
of query (Wq), key (Wk), and value (Wv) branches with d-dim output to have a
2D matrix fqi , f

k
i , f

v
i ∈ RN×d [3,25,2]. The i-th local patch self-attention across

T frames is then formulated as

f locali = Attn(fqi , f
k
i , f

v
i ) = SoftMax(

fqi f
k⊤
i + ri√

d
)fvi ,∈ RN×d. (1)

To enable the model to be aware of spatial-temporal correlations, we propose
adding a directional product relative position-time bias ri ∈ RN×N , where ele-
ment ra,b = pδHa,b,δ

W
a,b,δ

T
a,b

,∈ R is the relative position weight between the voxel a

and b in Hl ×Wl × T tensor7. Notably, while the bias as in [22] only addresses
spatial considerations, temporal aspects are crucial for our task. We set the off-
set of patch positions in three directions as follows: δHa,b = Ha −Hb +Hl, δ

W
a,b =

Wa −Wb +Wl, and δTa,b = Ta − Tb + T as the indices in the learnable tensor p.
Therefore, our ri can distinguish between spatial or temporal offsets and their
direction.

In addition, motion can introduce offsets between corresponding pixels in
different sequential frames, and boundary pixels may often transition across
pre-defined patches spanning multiple frames. Therefore, using a fixed patch
splitting or pyramid shrinking of the patch [4,25,2] may not efficiently explore

6 //: floor division, which rounds the division result down to the nearest integer.
7 A learnable tensor p ∈ R(2Hl−1)×(2Wl−1)×(2T−1) is initialized with
trunc normal [22], where Hl and Wl are the maximum patch dimensions in
global attention. Of note, we use the same p for local and global attention.
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cross-frame information in boundary regions. As such, we propose to adopt the
approach in SWinTransformer [14] to different splitting methods within consec-
utive transformer blocks to provide connections within various possible patch
combinations. In addition, as in [14], we set the regular patch window with fixed
dimensions of MH = MW = 4, and displace the shifted window by (2,2) pixels.
By doing this, no pixel will always be the middle patch boundary. Thus, with
a constant N , the computational complexity of local processing for all patches
becomes O(N2 Hl

MH

Wl

MW
), which scales linearly with the input spatial size.

For efficient global correlation, we follow the lightweight transformer de-
sign [4], which uses a global embedding G ∈ RK×d with K ≪ Hl × Wl × T
randomly generated global tokens as the anchor for global information aggrega-
tion Ĝ. We perform the aggregation using the attention mechanism with Gq, fki ,

and fvi , which is then broadcasted with the attention mechanism of fqi , Ĝ
k, and

Ĝv to leverage global contextual information [4]. Notably, with a global refer-
ence anchor G, we can process each patch in parallel. Thus, for global attention,
information from local tokens can be aggregated by modeling their global de-
pendencies using

Ĝi = Attn(Gq, fki , f
v
i ) = SoftMax(

Gqfk⊤i + ri√
d

)fvi ,∈ RN×d. (2)

We then broadcast these global dependencies to each local token as follows:

fglobali = Attn(fqi , Ĝ
k
i , Ĝ

v
i ) = SoftMax(

fqi Ĝ
k⊤
i + ri√
d

)Ĝv
i ,∈ RN×d. (3)

For each patch, we have the final feature f ′i = f locali + fglobali ,∈ RN×d. By adding

f locali and fglobali , each token can leverage both local and global features while
maintaining linear complexity relative to the input size. This results in noticeable
improvements with a negligible increase in FLOPs.

After the processing of our L blocks of LiST2, deconvolution with skip con-
nections is applied to generate the cine MRI sequences. The model is trained
with the following reconstruction loss:

LLiST 2

rec = ||{c̃s+1
−2 , c̃s+1

−1 , c̃s+1
0 , c̃s+1

1 , c̃s+1
2 }, {{c̃s+1

−2 , c̃s+1
−1 , c̃s+1

0 , c̃s+1
1 , c̃s+1

2 }||22. (4)

Note that with T = 5 and a step size of T//2 = 2, we use only three middle
generated frames from each video section as our final results.

2.2 Recurrent Sliding Fine-Tuning (ReST)

To improve coherence between temporal sections, we further adapt the recurrent
scheme as a fine-tuning phase with additional loss regularization to alleviate
flickering. Specifically, we input the frame of section s+1 as the last output
frame of section s, which can be described as follows:

Section s+ 1 : {c̃s+1
−1 , c̃s+1

0 , c̃s+1
1 } = LiST2({c̃s0, xs+1

−1 , xs+1
0 , xs+1

1 , xs+1
2 }). (5)
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Fig. 2: Qualitative comparisons of our proposed LiST2 + ReST with image-
based Bi-VAE-GAN (UNet) [11] and ablation study. The first three and later
two frames are from two consecutive sections in LiST2-based methods.

We calculate LReST
rec = ||{c̃s+1

−1 , c̃s+1
0 , c̃s+1

1 }, {c̃s+1
−1 , c̃s+1

0 , c̃s+1
1 }||22 as our reconstruc-

tion loss. Moreover, an overlap exists in the output frames of the neighboring
sections. Therefore, we enforce the consistency with Loverlap = ||c̃s1 − c̃s+1

−1 ||22.
The overall loss in ReST phase is L = Lrec + αLoverlap.

3 Experiments and Results

For the experiments carried out in this work, 20 sequences with a total of 3,774
paired tagged and cine MRI frames were acquired from a total of 20 healthy
controls, while speaking an utterance, “a souk” [7,23]. The image sequence was
acquired at a rate of 26 frames per second. Both cine and tagged MRI images are
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in the same spatiotemporal coordinate space. For our task, tagged MRI images
with horizontal tag patterns were utilized. Each frame of tagged and cine MRI
has a spatial size of 128×128.

We employed a subject-independent five-fold cross-validation approach. In
each fold, one subject was used for testing, while the remaining four subjects
were used for training and validation. The long video was divided into sections
consisting of five frames with a step size of two. For data augmentation, we
applied random jitter by resizing the input images from 128× 128 to 140× 140,
followed by random cropping back to the original size of 128×128 similar to [9,6].

We utilized the standard UNet backbone, employing two convolutional or de-
convolutional blocks in our encoder and decoder modules, respectively. We note
that all compared methods consistently utilized the L2 minimization objective.
Empirically, we set L = 4, K = 64, and α = 1. Our framework was implemented
using the PyTorch deep learning toolbox, with a learning rate set to 1e-4 in
the Adam optimizer. The training was conducted on an NVIDIA A100 GPU,
requiring approximately 5 hours for 200 epochs of LiST2 training, followed by
100 epochs of ReST. During testing, translating one tagged MRI section to the
corresponding cine MR images took about 0.2 seconds.

We anticipate that the synthesized images will demonstrate realistic and
structurally consistent textures relative to their corresponding ground truth im-
ages, which is essential for subsequent analyses. In Fig. 2, we present a qualitative
comparison between our proposed LiST2 and ReST methods. We can clearly ob-
serve that the generated cine MRI sequence aligns well with the ground truth,
achieving superior structural and texture consistency among neighboring frames.
In the LiST2-only model, i.e., without the ReST phase, we can achieve relatively
good temporal consistency within each section. However, flickering may still be
present in the outputs across different sections. Additionally, the reconstructed
tongue shape in the second section also shows a relatively large deformation
compared with the ground truth. For LiST2 w/o shifted window (SW), the gen-
erated results can have a large degradation. SW can be an important module in
our framework to enhance the local attention of moving parts. Without SW, the
spatial-temporal correlation might be disrupted by mismatches in pixels caused
by motion. The considerable variation in contrast and texture within the tongue
region across real cine MRI images could potentially impact subsequent analyses.
Furthermore, without a lightweight design, directly applying the SWinViT [14]
to video data may not yield visually satisfactory results. The relatively limited
dataset may not adequately support the training of such a large model. While
the framewise method [11] is able to synthesize cine MRI sequences with good
visual quality, coherence among neighboring frames may be lacking. For exam-
ple, the second frame in Fig. 2 often appears considerably smoother compared
with the third frame, leading to distortion in the anatomical structure. Notably,
the use of adversarial loss as in [11] does not lead to improved performance in
our video synthesis task.

To quantitatively evaluate our framework, we employed established evalu-
ation metrics, such as the Structural Similarity Index Measure (SSIM), Peak



8 X. Liu et al.

Table 1: Numerical comparisons and ablation study with five-fold cross-
evaluation. The best results are shown in bold. We report the results as
mean±SD over three random initializations.
Methods Processing input L1 ↓ SSIM ↑ PSNR ↑
UNet [9] Image 157.53±0.14 0.9426±0.0034 32.85±0.12
Bi-VAE-GAN (UNet) [11] Image 152.47±0.28 0.9502±0.0074 36.48±0.30

DVDnet [20] Sliding section 150.24±0.15 0.9678±0.0031 36.46±0.15

VRT [8] Video (16-frame) 208.71±0.18 0.8742±0.0023 16.97±0.19

Proposed (LiST2 + ReST) Sliding section 141.91±0.18 0.9743±0.0035 38.95±0.15
Proposed (LiST2 only) Sliding section 143.05±0.20 0.9728±0.0027 38.72±0.18
Proposed (LiST2 w/o SW) Sliding section 147.68±0.26 0.9715±0.0025 38.49±0.16
Proposed (Replace LiST2 to SWinViT [14]) Sliding section 192.54±0.22 0.9135±0.0042 30.54±0.22

Fig. 3: Sensitivity analysis of our LiST2: (a) block number L, (b) section length
T , and (c) global token number K, as well as (d) Loverlap weight α used in ReST

Signal-to-Noise Ratio (PSNR), and Mean L1 error [11,9]. Table 1 lists numer-
ical comparisons between the proposed framework, image-based tagged-to-cine
methods (e.g., UNet [9] and Bi-VAE-GAN [11]), the recent CNN-based sliding
window method DVDnet [20] with five-frame section, as well as video-based
transformer VRT [8]. The proposed LiST2 outperformed the other three com-
parison methods with respect to L1 error, SSIM, and PSNR consistently. By in-
tegrating five consecutive frames as input, DVDnet [20] with CNN-based sliding
window can achieve improvements over the frame-based methods [9,11], while its
spatial-temporal modeling ability could be inferior to the ViT-based models [8].
However, the relatively limited video data cannot adequately support the VRT
with a 16-frame video section, leading to inferior performance. Similarly, the
absence of a lightweight ViT design, such as replacing the LiST2 module with
SWinViT [14], also results in a performance drop. Furthermore, the performance
can be enhanced even further through post-training fine-tuning with ReST. It
is worth noticing that recurrent-only models often experience significant perfor-
mance degradation when applied to short sequences [8], because of the lack of
enough long sequences for training. As shown in Fig. 3, the relatively high per-
formance of LiST2 can be achieved with L ∈ [4, 6], T ∈ [5, 7], and K ∈ [64, 128].
The lower one is usually adopted for efficiency. In addition, the weight of Loverlap

could be α ∈ [0.5, 2].
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4 Conclusions

In this work, we proposed to synthesize cine MRI sequences from its paired
tagged MRI sequences. Given that occluded information by the tag patterns can
be inherited in neighboring frames, it is advantageous to leverage inter-frame
information. In addition, temporal flickering is a long-lasting challenge in se-
quence processing. With relatively limited data, we proposed a split-and-integral
protocol with LiST2 and ReST to balance spatial-temporal modeling efficiency
and consistency. We systematically designed a lightweight LiST2 framework to
achieve video translation, in which the directional product relative position-time
bias and shifted window were further adapted to catering the motion. The ReST
phase can be a general module to be added on sliding window-based methods
for improved cross-section consistency. Our experimental results showed that our
method outperformed the comparison methods both quantitatively and qualita-
tively. The synthesized cine MRI holds promise for further applications, such as
tongue segmentation and surface motion observation.

Acknowledgements

This work is supported by NIH R01DC014717, R01DC018511, and R21EB034911.

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the
content of this article.

References

1. Chan, K.C., Wang, X., Yu, K., Dong, C., Loy, C.C.: Basicvsr: The search for
essential components in video super-resolution and beyond. In: Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition. pp. 4947–4956
(2021)

2. Chu, X., Tian, Z., Wang, Y., Zhang, B., Ren, H., Wei, X., Xia, H., Shen, C.:
Twins: Revisiting the design of spatial attention in vision transformers. Advances
in Neural Information Processing Systems 34, 9355–9366 (2021)

3. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner,
T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., et al.: An image is
worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929 (2020)

4. Huang, T., Huang, L., You, S., Wang, F., Qian, C., Xu, C.: Lightvit: Towards
light-weight convolution-free vision transformers. arXiv preprint arXiv:2207.05557
(2022)

5. Isobe, T., Jia, X., Gu, S., Li, S., Wang, S., Tian, Q.: Video super-resolution with
recurrent structure-detail network. In: Computer Vision–ECCV 2020: 16th Euro-
pean Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XII 16. pp.
645–660. Springer (2020)



10 X. Liu et al.

6. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with condi-
tional adversarial networks. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. pp. 1125–1134 (2017)

7. Lee, J., Woo, J., Xing, F., Murano, E.Z., Stone, M., Prince, J.L.: Semi-automatic
segmentation of the tongue for 3D motion analysis with dynamic MRI. In: ISBI.
pp. 1465–1468. IEEE (2013)

8. Liang, J., Cao, J., Fan, Y., Zhang, K., Ranjan, R., Li, Y., Timofte, R., Van Gool,
L.: Vrt: A video restoration transformer. arXiv preprint arXiv:2201.12288 (2022)

9. Liu, X., Prince, J.L., Xing, F., Zhuo, J., Reese, T., Stone, M., El Fakhri, G., Woo,
J.: Attentive continuous generative self-training for unsupervised domain adaptive
medical image translation. Medical Image Analysis p. 102851 (2023)

10. Liu, X., Xing, F., Prince, J., Stone, M., El Fakhri, G., Woo, J.: Synthesizing audio
from tongue motion during speech using tagged mri via transformer. In: Medical
Imaging 2023: Image Processing. vol. 12464, pp. 203–207. SPIE (2023)

11. Liu, X., Xing, F., Prince, J.L., Carass, A., Stone, M., El Fakhri, G., Woo, J.: Dual-
cycle constrained bijective vae-gan for tagged-to-cine magnetic resonance image
synthesis. In: 2021 IEEE 18th International Symposium on Biomedical Imaging
(ISBI). pp. 1448–1452. IEEE (2021)

12. Liu, X., Xing, F., Prince, J.L., Stone, M., El Fakhri, G., Woo, J.: Structure-aware
unsupervised tagged-to-cine mri synthesis with self disentanglement. In: Medical
Imaging 2022: Image Processing. vol. 12032, pp. 470–476. SPIE (2022)

13. Liu, X., Xing, F., Stone, M., Zhuo, J., Reese, T., Prince, J.L., El Fakhri, G., Woo,
J.: Generative self-training for cross-domain unsupervised tagged-to-cine mri syn-
thesis. In: International Conference on Medical Image Computing and Computer-
Assisted Intervention. pp. 138–148. Springer (2021)

14. Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin
transformer: Hierarchical vision transformer using shifted windows. In: Proceedings
of the IEEE/CVF international conference on computer vision. pp. 10012–10022
(2021)

15. Maggioni, M., Huang, Y., Li, C., Xiao, S., Fu, Z., Song, F.: Efficient multi-
stage video denoising with recurrent spatio-temporal fusion. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 3466–
3475 (2021)

16. Osman, N.F., McVeigh, E.R., Prince, J.L.: Imaging heart motion using harmonic
phase mri. TMI 19(3), 186–202 (2000)

17. Parthasarathy, V., Prince, J.L., Stone, M., Murano, E.Z., NessAiver, M.: Measuring
tongue motion from tagged cine-mri using harmonic phase (harp) processing. The
Journal of the Acoustical Society of America 121(1) (2007)

18. Petitjean, C., Rougon, N., Cluzel, P.: Assessment of myocardial function: a review
of quantification methods and results using tagged mri. Journal of Cardiovascular
Magnetic Resonance (2005)

19. Shi, X., Huang, Z., Bian, W., Li, D., Zhang, M., Cheung, K.C., See, S., Qin, H.,
Dai, J., Li, H.: Videoflow: Exploiting temporal cues for multi-frame optical flow
estimation. arXiv preprint arXiv:2303.08340 (2023)

20. Tassano, M., Delon, J., Veit, T.: Fastdvdnet: Towards real-time deep video de-
noising without flow estimation. In: Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition. pp. 1354–1363 (2020)

21. Wang, C., Zhou, S.K., Cheng, Z.: First image then video: A two-stage network for
spatiotemporal video denoising. arXiv preprint arXiv:2001.00346 (2020)



Temporal Consistent Tagged-to-Cine MRI Synthesis with LiST2 11

22. Wu, K., Peng, H., Chen, M., Fu, J., Chao, H.: Rethinking and improving rela-
tive position encoding for vision transformer. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision. pp. 10033–10041 (2021)

23. Xing, F., Woo, J., Lee, J., Murano, E.Z., Stone, M., Prince, J.L.: Analysis of 3-D
tongue motion from tagged and cine magnetic resonance images. Journal of Speech,
Language, and Hearing Research 59(3), 468–479 (2016)

24. Xing, F., Woo, J., Gomez, A.D., Pham, D.L., Bayly, P.V., Stone, M., Prince,
J.L.: Phase vector incompressible registration algorithm for motion estimation from
tagged magnetic resonance images. IEEE TMI 36(10) (2017)

25. Zhang, Q., Yang, Y.B.: Rest: An efficient transformer for visual recognition. Ad-
vances in Neural Information Processing Systems 34, 15475–15485 (2021)

26. Zhu, X., Hu, H., Lin, S., Dai, J.: Deformable convnets v2: More deformable, bet-
ter results. In: Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition. pp. 9308–9316 (2019)


	Tagged-to-Cine MRI Sequence Synthesis via Light Spatial-Temporal Transformer

