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Abstract. Medical image analysis, empowered by artificial intelligence
(AI), plays a crucial role in modern healthcare diagnostics. However, the
effectiveness of machine learning models hinges on their ability to gener-
alize to diverse patient populations, presenting domain shift challenges.
This study investigates the domain shift problem within chest X-ray
classification, with a particular emphasis on cross-population variations,
especially within underrepresented groups. We examine the domain shift
of a supervised version of Adversarial Domain Adaptation (ADA) across
three distinct population datasets (sources), using a Nigerian chest X-
ray dataset as the target dataset. By evaluating model performance,
we quantify the disparities between the source and target populations.
Our experiments revealed varying model performance when trained on
the source domain and evaluated on the target domain. To address this
variability, we propose a supervised domain adaptation technique that
leverages labeled data from both domains for fine-tuning. The results
demonstrate significant enhancements in model accuracy for chest X-ray
classification in the Nigerian dataset. This research underscores the im-
portance of domain-aware model development in AI-driven healthcare,
contributing to addressing cross-population domain-shift challenges in
medical imaging.
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1 Introduction

The discipline of medical image analysis has experienced a profound transfor-
mation through the integration of artificial intelligence (AI) technologies [1]. AI
models have demonstrated promising capabilities in analyzing medical images,
thereby assisting medical professionals in achieving accurate diagnoses and de-
vising effective treatment plans [2]. Notably, recent advancements in computer



vision have facilitated the utilization of deep learning in medical image analysis,
fostering the development of accurate and efficient models for disease diagno-
sis [3]. Nevertheless, the application of AI techniques to medical imaging in the
context of diverse populations and datasets presents various challenges, including
issues related to generalization, biases, and safety concerns [4].

Chest X-ray analysis plays a crucial role in the diagnosis and management
of a wide range of respiratory and cardiovascular conditions [5]. Nowadays, AI
models are increasingly used with this imaging modality for a wide range of
tasks such as image segmentation, image registration, analysis of respiration
motion, detection of anatomical features, disease diagnosis, and prognosis [6].
The performance of deep learning models is being widely explored for these
tasks [7].

Traditionally, the interpretation and analysis of medical images is carried out
by expert radiologists or physicians [3]. Due to the lack of professional radiol-
ogists in the developing world and the enormous stress faced by physicians as
a result of heavy workload, human interpretation of medical images is prone to
errors. This results in longer time for initial diagnosis, delays in the follow up,
and chance of misdiagnosis. AI models are known to be accurate in classification
and object detection tasks [8]. Therefore, integrating AI models in chest X-ray
analysis and interpretation may greatly improve the process, and offer accurate
and timely analysis to support decision-making. However, variations in patient
demographics, imaging protocols, and equipment across different populations
can result in significant domain shifts, potentially hindering the performance of
AI models trained on one population when applied to another, especially if they
come from different races [4].

Many research works focus on investigating domain shifts as a result of dif-
ferent equipment, different hospitals, or cross-modality [7, 9–11]. These models
tend to be biased when tested on samples from underrepresented groups in the
dataset. One of the primary causes of model bias has been attributed to the
lack of diversity of the training set where minority populations are underrepre-
sented [4]. The challenges become further difficult to address, as there are scarce
publicly available datasets from these underrepresented groups.

In this paper, we study the critical issue of domain shift in chest X-ray
image classification, particularly concerning diverse populations. We recognize
that conventional machine learning and deep learning models, even when pre-
trained on extensive datasets, may encounter challenges in adapting to new
populations due to inherent domain differences. Our focus extends to quantifying
population-based domain shifts within African chest X-ray datasets from Nigeria,
where unique demographic and clinical characteristics can introduce domain-
specific complexities in accurately classifying X-ray images. By scrutinizing and
addressing this domain shift, our objective is to address the generalizability and
clinical applicability of AI-driven chest X-ray image classification across diverse
populations.

To achieve this goal, we propose and evaluate a domain adaptation approach
aimed at mitigating the adverse effects of domain shift. We address domain adap-



tation employing Domain Adversarial Neural Networks (DANNs), which prior-
itizes the adjustment of invariant features within the target domain to narrow
the disparity between the pre-trained source domain and the Nigerian target do-
main. Our analysis entails a comprehensive examination of domain shift in chest
X-ray image classification, utilizing a meticulously curated dataset representa-
tive of the Nigerian population. We delve into the intricacies of feature-level
domain adaptation techniques, elucidating their application in enhancing the
performance of AI models across disparate domains. Through extensive experi-
mentation, we demonstrate the efficacy of our proposed approach in addressing
domain shift and enhancing the accuracy of chest X-ray image classification.
Consequently, our contributions advance the realm of AI-driven healthcare so-
lutions by fostering adaptability to diverse populations.

2 Literature Review

In recent years, the fusion of artificial intelligence (AI) with medical image anal-
ysis has paved the way for transformative advancements in healthcare diag-
nostics [12]. Among these applications, chest X-ray image classification holds
particular significance for its role in diagnosing a wide range of respiratory and
cardiovascular conditions [13]. Several X-ray diagnosis systems based on ma-
chine learning have been proposed, achieving promising performance [5, 14, 15].
However, the successful application of AI models in this domain often hinges on
their adaptability to account for the distinct characteristics of diverse patient
populations [16]

The term cross-population domain shift describes variations in data distri-
butions across different populations. This is a widely recognized challenge in
medical image analysis, especially with the advent of deep-learning [17]. Exten-
sive studies underscore the impact of domain shifts on the performance of AI
models. For example, Rajpurkar et al. highlighted that models trained on data
from one population may not generalize effectively to others, leading to wide
disparities in performance [18].

Domain adaptation (DA) techniques have emerged as a promising avenue to
tackle the issue of domain shift [19]. Feature-level adaptation techniques have
garnered significant attention, demonstrating their ability to align feature distri-
butions [20]. Ganin et al. proposed domain-adversarial training and unsuper-
vised domain adaptation [21, 22], which have demonstrated success in mitigat-
ing domain discrepancies. In addition, He et al. introduced a classification-aware
semi-supervised domain adaptation technique, which shows promise for leverag-
ing limited labeled data effectively [23]. Techniques such as data augmentation
through latent space interpolation [24] have also emerged as valuable tools for
enhancing model generalization.

While the concept of domain adaptation has been well-explored in computer
vision, a real value can be seen in the context of medical imaging applications
in healthcare domains [25]. Given the unique challenges inherent in chest X-ray
image classification across diverse datasets [26], it becomes evident that domain



shift originating from variations across different patient populations could in-
troduce patient-specific discrepancies. Addressing this pressing issue is crucial
for ensuring the generalizability and effectiveness of AI-based diagnostic sys-
tems in clinical practice. Although DA techniques adapt to variations in data
from different population are highly pertinent, they are relatively limited. Some
preliminary studies have begun to explore DA techniques on different medical
imaging datasets. For instance, Feng et al. applied domain adaptation methods
to different chest X-ray datasets, highlighting the potential of these techniques
to adapt models to new populations and domains [27]. Seyyed-Kalantari et al.
investigated the issue of bias in machine learning assisted diagnosis system, in
under-served patient population [28]. Their work confirmed the presence of cross-
population variability in medical imaging analysis. The comprehensive survey
conducted by Yu et al. provides valuable insights into the landscape of domain
adaptation techniques in medical image analysis, offering a roadmap for future
research directions in this rapidly evolving field [25].

Domain shift is one of the major issues that undermines the generalizability
potential of deep learning based diagnosis systems [29]. DA can be categorized
into to two broad categories: 1) Unsupervised DA, which tries to align data dis-
tributions of the features in the feature space with label source data, mapped
to unlabelled target dataset [30], [31]. 2) Supervised methods, which align the
distribution gap between labelled source and target domain [32], [33]. Other
works emphasize the importance of measuring domain shift for deep learning
models in medical images [34]. In the work of Stacke et al., the authors proved
the existence of domain shift in medical images data as result of different data
acquisition pipeline, different medical facility, or over time [9]. Results from their
experiments demonstrate how the proposed measure outperforms existing meth-
ods for measuring domain shift and uncertainty, by having a strong association
with performance decline when testing a model across a wide range of different
types of domain changes [9].

3 Datasets and Methods

3.1 Nigerian X-ray dataset

The target domain dataset used in this research is a locally collected dataset
of chest X-rays from the Radiology Centre of Aminu Kano Teaching Hospital
(AKTH), Nigeria. The dataset consists of 6 345 X-ray images. The images were
annotated by three different physicians into three different categories: pneumo-
nia, tuberculosis, and normal X-rays. The distribution of the images per category
is: 2 340 X-ray images diagnosed with tuberculosis by physicians, 1 445 diagnosed
with pneumonia, and 2 560 termed as normal X-rays. The image dimension was
299 × 299 pixels with 72 pixels/inch DPI. The dataset will be released for pub-
lic use under Apache license 2 on Kaggle. Figure 1 shows representative sample
images from this dataset.



Fig. 1. Representative images from the Nigerian dataset. Left, image from the tuber-
culosis (TB) group. Centre, image from the pneumonia (P) group. Right, image from
the healthy normal (HC) group.

3.2 Baseline X-ray datasets

Three different chest X-ray datasets were selected as baseline datasets for our
study. The first dataset is the chest X-ray classification dataset, collected at
Guangzhou Medical Center, China [5]. The dataset is made of 5 863 images. The
images were annotated by expert physicians into pneumonia and normal X-rays.
The second dataset is VinDr-CXR, which consist of 18 000 images annotated by
17 different physicians into 6 different classes of diagnosis including pneumonia
and tuberculosis [35]. The dataset was collected in Hanoi Medical University
Hospital, Vietnam. The third dataset is COVID-19 radiography database, orga-
nized by a team of researchers from Qatar University, Doha [36]. The dataset
has 1 345, pneumonia X-rays, 1 341 normal X-rays, and 1 200 COVID-19 X-rays.
In the following, we will refer to the datasets as China, Vietnam, and Doha.

3.3 Baseline models and domain shift analysis

We employ a DenseNet201 CNN model to obtain the baseline models [37]. The
architecture is selected to be one of the best known models in classifying X-ray
images. Three different models were trained with the three baseline datasets
selected for this study, respectively, and the best performance in our Nigerian
test set was recorded. The models were trained with ImageNet weights using
fine tuning, by freezing the initial layers, to ensure that only weights of the
unfrozen layers are updated during training. These allows the model to preserve
the generic features while learning domain-specific representations through the
unfrozen layer. We replaced the last layer with a dense layer and applied the
softmax activation function with three labels. All the models utilized a similar
hyper-parameter setup: categorical cross-entropy as loss function and restricting
the computation of the loss (for training and validation) to the labels from
the target domain. Stochastic gradient descent was used as the optimizer, with
the initial learning rate of 0.001, momentum of 0.9, and the mini-batch size
to 32. After each epoch, we reduced the learning rate by a factor of 10 if the
validation loss did not improve. The batch images underwent data augmentation



Fig. 2. Architecture of our Adversarial Neural Network (ADA-NN), where the input
data comes from two distinct datasets (a labeled source and a target), and fed into
separate feature extraction blocks. These features are then merged through a feature
fusion block before being passed to a classifier, while domain adversarial training en-
courages the feature extractor to learn domain-invariant representations, enhancing the
model’s ability to generalize across domains.

using common techniques such as scaling, rotation around the image center,
translation relative to the image extent, and zooming in. Finally, all the networks
were evaluated on the target domain data. Five fold cross-validation was used,
utilizing the 10% of the samples from the source data as test set. The Nigerian
dataset is used separately as the target test dataset to evaluate the domain
adaptation performance.

3.4 Adaptation with Domain Adversarial Neural Networks
(DANNs)

Adversarial Domain Adaptation (ADA) is one of the most powerful domain
adaptation techniques employed to mitigate the challenges posed by domain
shifts in machine learning, specifically within the context of computer vision
tasks [38]. It offers a principled framework for adapting models trained on a
source domain to perform effectively on a target domain, even if there are signif-
icant distribution differences between the two domains. The idea of leveraging
adversarial learning is to create domain-invariant feature representations. This
is achieved through a two-step process: 1) Feature Extractor and Label Pre-
dictor. This step works similarly to a conventional deep learning architecture.
The feature extractor transforms the input data (images) into a feature space,
while the label predictor performs the primary task of image classification. 2)
Domain Discriminator. A neural network performs the task of determining the
domain (source or target) of the feature representations extracted by the feature
extractor.

Domain adaptation is achieved through adversarial learning. Specifically, the
feature distribution between source and target domains are effectively aligned
through adversarial adaptation in the shared feature space. The feature extrac-
tor learns to produce domain-invariant features for the task, making the model
adaptable to new domains different from the source population datasets, without
requiring extensive retraining of the model on the target datasets.



Dataset Accuracy (%) Precision (%) F1-score (%) AUC

China 79.58 ± 0.72 74.0 ± 3.74 78.20 ± 2.74 0.88 ± 0.14
Vietnam 96.32 ± 0.12 93.0 ± 0.44 96.12 ± 0.74 0.97 ± 0.04
Doha 94.89 ± 1.74 92.22± 7.74 95.07 ± 1.16 0.95 ± 0.03

Table 1. Performance of DenseNet models trained and tested on China, Vietnam, and
Doha datasets, respectively.

Dataset Accuracy (%) Precision (%) F1-score (%) AUC

China 62.45 ± 3.31 54.34 ± 3.33 60.45 ± 1.08 0.65 ± 0.02
Vietnam 66.02 ± 2.77 45.67 ± 2.08 65.43 ± 3.22 0.66 ± 0.03
Doha 71.70 ± 2.54 68.41 ± 8.21 69.00 ± 5.05 0.73 ± 0.04

Table 2. Performance of DenseNet models trained on China, Vietnam, and Doha
datasets and tested on the Nigerian dataset.

Dataset Accuracy (%) Precision (%) F1-score (%) AUC

China 81.85 ± 8.59 79.07 ± 3.47 83.72 ± 2.28 0.93 ± 0.03
Vietnam 89.40 ± 0.44 83.02 ± 9.89 90.01 ± 0.61 0.92 ± 0.08
Doha 88.70 ± 7.46 78.44 ± 3.17 70.70 ± 5.46 0.94 ± 0.16
Nigeria 90.08 ± 2.25 87.29 ± 0.34 89.75± 0.93 0.96 ± 0.01

Table 3. Performance of ADA models trained on China, Vietnam, Doha, and Nigerian
dataset and tested on the Nigerian dataset.

While ADA is popularly used in unsupervised settings where the datasets are
unlabelled, we propose a modification for supervised ADA. The domain discrimi-
nator loss function is updated based on its ability to distinguish between features
from the source and target domains. This adversarial objective ensures that the
feature extractor learns domain-invariant features. For the discrimination step,
the objective is to minimize the combined classification loss from both domains.
The approach depicted in Figure 2 aims at illustrating the general workflow of
our proposed ADA technique.

4 Experimental Results

To evaluate the effectiveness of our domain adaptation approach, we used the
Nigerian chest X-ray dataset for both feature alignment and testing. Specifi-
cally, the 80% of the Nigerian dataset was employed as unlabeled target data
during the feature alignment process. This subset was used to train the do-
main discriminator and align the feature distributions between the source and
target domains. The remaining 20% of the Nigerian dataset was reserved for
testing purposes only, ensuring that the evaluation of the model’s performance
on the target domain was conducted on data not seen during training or fea-
ture alignment. This approach guarantees a fair assessment of the generalization
capabilities of the model



4.1 Domain shift analysis

In this section, we assess the performance of the DenseNet models trained in the
baseline datasets and tested in our Nigerian dataset. Table 1 and Table 2 gather
the performance results of the three models tested on both the source and target
domains, respectively. Our analysis reveals a significant decline in performance,
with accuracies ranging from 79.70% to 96.70% in the source domains, contrast-
ing sharply with the 62.45% to 71.70% accuracy observed in the target domain.
This notable decrease underscores the presence of a cross-population domain
shift among the datasets, with the Chinese model demonstrating the most pro-
nounced decline. Consequently, it becomes evident that DenseNet struggles to
generalize effectively to our target domain when solely trained on baseline source
domains.

4.2 ADA results

Table 3 presents the results of our adversarial models over the Nigerian test
set. The metrics show a considerable performance improvement accross all the
datasets, with an accuracy now ranging from 81.85 to 89.4% when tested in
the target domain. The accuracy of the ADA model trained over the Nigerian
test set reached the 90.08%, which is close to Vietnam and Doha performance.
These results indicate the effectiveness of ADA on handling the cross-population
domain shifts.

5 Conclusions

In this paper, we investigated the potential cross-population bias of deep-learning
models in a relevant medical domain such as X-ray classification. Our research
introduces a new chest X-ray data for the Nigerian population and uncovers
cross-population domain shifts in deep-learning-based X-ray classification mod-
els. We investigate the extent of domain shift between different sources and
target populations and propose the use of domain adversarial networks as a do-
main adaptation strategy. Through empirical evaluation and analysis, we have
quantified the extent of the downgrade in performance due to the domain shifts.

Our results revealed notable disparities in classification performance across
the different adaptation scenarios. Particularly, our scenarios, where the source
and target populations exhibited substantial demographic and clinical diversity,
resulted into high domain shift challenges. These findings underscore the ne-
cessity of domain adaptation techniques for enhancing model generalizability
across diverse populations. By thoroughly characterizing domain shift, we illu-
minate the path toward mitigating its effects and improving the robustness of
chest X-ray image classification models. This analysis informs our exploration
of domain adaptation strategies, including supervised fine-tuning and domain-
specific adaptations, as effective means of addressing these domain discrepancies
and achieving better adaptation outcomes.



The paper proposed a solution by leveraging the adversarial adaptation
framework ADA to address the challenge of cross-population domain shift in
chest X-ray image classification. We showed the effectiveness of ADA in miti-
gating domain shift and greatly improving classification performance for diverse
patient populations, contributing to the advancement of AI-driven healthcare
solutions.
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