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Abstract. Recent advances in Vision Transformers (ViTs) have signifi-
cantly enhanced medical image segmentation by facilitating the learning
of global relationships. However, these methods face a notable challenge
in capturing diverse local and global long-range sequential feature rep-
resentations, particularly evident in whole-body CT (WBCT) scans. To
overcome this limitation, we introduce Swin Soft Mixture Transformer
(Swin SMT), a novel architecture based on Swin UNETR. This model
incorporates a Soft Mixture-of-Experts (Soft MoE) to effectively han-
dle complex and diverse long-range dependencies. The use of Soft MoE
allows for scaling up model parameters maintaining a balance between
computational complexity and segmentation performance in both train-
ing and inference modes. We evaluate Swin SMT on the publicly avail-
able TotalSegmentator-V2 dataset, which includes 117 major anatom-
ical structures in WBCT images. Comprehensive experimental results
demonstrate that Swin SMT outperforms several state-of-the-art meth-
ods in 3D anatomical structure segmentation, achieving an average Dice
Similarity Coefficient of 85.09%. The code and pre-trained weights of
Swin SMT are publicly available at https://github.com/MI2DataLab/
SwinSMT.
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1 Introduction

Segmentation of anatomical structures is crucial for various clinical applications
such as diagnostics, treatment planning, quantitative analysis, image-guided in-
terventions, and clinical trials [12]. In recent years, various segmentation methods
of anatomical structures have been developed [3,4], particularly for specific tasks
such as organ segmentation and tumor delineation [1, 6], as well as for specific
body parts like abdominal organs [8, 15,16].

While large-scale ViT-based methods have garnered significant attention for
their impressive performance and capacity to model long-range sequences, they
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Fig. 1. An overview of the Swin SMT architecture. The input to our model is a 3D
CT scan. The Stem creates non-overlapping patches of the input data and utilizes
a patch partition layer to generate windows with a desired size for computing self-
attention. Encoded feature representations in each of the encoder blocks are then fed
to a Convolutional Neural Network (CNN)-based decoder via skip connections at mul-
tiple resolutions. The segmentation output consists of 118 channels, corresponding to
117 classes and background, representing the major anatomical structures in WBCT
images. H, W, D, and C refer to height, width, depth, and number of feature channels,
respectively. W-MSA and SW-MSA refer to window-based multi-head self-attention
with regular and shifted windows, respectively.

encounter notable challenges when employed in medical image analysis. These
challenges include computational complexity, as seen in architectures such as
ViT-based backbone (e.g. UNETR [3]), RepUX-Net [10], or nnFormer [22], and a
deficiency in modeling long-range dependencies in scale and intensity, as observed
in models like Swin UNETR [19] or UNesT [21].

In recent years, Mixture-of-Experts (MoE) [11] has gained popularity in the
Natural Language Processing domain and has subsequently been applied in the
computer vision domain. MoE allows the model to dynamically allocate compu-
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tational resources to the most relevant parts of the input data, enhancing effi-
ciency and performance. By selectively activating different subset of the model’s
parameters, MoE enables the ViT to scale up its capacity without a correspond-
ing increase in computational costs, leading to more accurate and efficient pro-
cessing of complex visual information [11,18]. Unlike vanilla MoE, recently intro-
duced Soft MoE [18] aggregates sequences into multiple global representations
by using a weighted average over sequence elements, enabling the model to select
the most important features. In the case of WBCT scans, global representations
are crucial for the proper segmentation of certain classes with various scales and
intensities, such as ribs and vertebrae.

Following these findings, we propose a novel Swin Soft Mixture Transformer
(Swin SMT), based on the Swin UNETR architecture, that incorporates Soft
MoE to effectively handle complex and diverse long-range dependencies, as seen
in WBCT images. Soft MoE allows for scaling up the model parameters main-
taining a balance between computational complexity and segmentation perfor-
mance in both training and inference modes. Swin SMT is designed for mod-
eling the whole volume global features at various scales and intensities. To the
best of our knowledge, this marks the first attempt to employ Soft MoE for
the segmentation task. It is also the first benchmark of the publicly available
TotalSegmentator-V2 dataset [20], encompassing 117 major anatomical struc-
tures in WBCT scans.

2 Method

Our Swin SMT is built upon the Swin UNETR [19], with a particular focus on
enhancing the Transformer encoder. We incorporate the Soft MoE by replacing
the feedforward network (FFN) within the Swin ViT block. The CNN-based
decoder remains consistent with the original implementation [19]. An overview
of the proposed method is illustrated in Fig. 1.

2.1 Swin Transformer Block

Let the input X ∈ RC×H×W×D be a 3D CT scan. Then, Stem layer first
partitions scan X into a sequence of 2 × 2 × 2 scan patches returning X ′ ∈
R(HWD/8)×8C and later applies a linear layer. With input X, the stem layer can
be described as:

X ′ = Partition(X), Xout = Linear(X ′), (1)

where Xout ∈ R(HWD/8)×d, and d is the hidden size.
We use the Swin block at the first stage due to its reported computational and

performance efficiency [19]. While Swin blocks excel at creating local representa-
tions, they encounter issues with long-range dependencies due to the windowed
attention mechanism used in them, a challenge we aim to mitigate in our model
with later stages.
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Fig. 2. An overview of the Soft MoE. Here, the router assigns the weighted average of
all the input tokens (patches) to each slot, which computes logits for each input pair of
tokens and slots using dispatch weights. Then, each expert processes its slots. Finally,
the original logits are normalized per token and used to combine all the slot outputs
for every input token. Tokens in slots are shown in decreasing order of logits assigned
to this token by dispatch weights.

2.2 Swin Soft Mixture Transformer Block

Soft MoE calculates representations as convex combinations of tokens. This al-
lows our model to better capture global information about WBCT scans by
enabling each slot to create a comprehensive aggregation of input tokens. An
overview of the Swin SMT block is presented in Fig. 2.

Motivated by [18], we swap FFN with Soft MoE layers within the Swin
Transformer block. Due to memory complexity, Soft MoE layers are added in
each stage, except for the first stage. Let X ∈ Rm×d denote the input sequence,
where m is sequence length, and d is hidden dimension size. With the model
having n experts and s = m/n slots per expert, the memory complexity of Soft
MoE is O(m2 + md + nd2). For the Swin block, we have m = (p/2i)3 at each
stage, where p is the patch size, and i is the stage number (i ∈ 1, 2, 3, 4). Then, for
p = 128 at the first stage, we have m = 262, 144, leading to significant memory
demand. Therefore, we choose to skip adding Soft MoE at the first stage.

The Soft MoE layer computes slot representations as convex combinations
of input tokens and learnable parameters Φ. The slot representations X̃ are
computed according to the following equations:

Dij =
exp((XΦ)ij)∑m

i′=1 exp((XΦ)i′j)
, X̃ = DTX. (2)

After obtaining the slot representations X̃, n expert functions are applied to
each of the corresponding s slots. The expert functions are modeled as FFNs
that transform X̃. The transformation is expressed as:

Y = concat({FFN⌊i/n⌋(X̃i); i ∈ {1, . . . , ns}}), (3)
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where Y is the output matrix obtained by concatenating the results of the n
expert functions, FFN⌊i/n⌋(X̃i) represents the output of the ⌊i/n⌋-th expert
function applied to the i-th slot representation X̃i, concat({. . .}) signifies the
concatenation of the outputs from all expert functions.

Having calculated Y , we now compute dispatch weights, creating a convex
combination of expert representations Y as follows:

Sij =
exp ((XΦ)ij)∑n·s

j′=1 exp((XΦ)ij′)
, Xout = SY. (4)

Here, Sij represents the dispatch weight for the i-th input sequence token and
the j-th slot representation, and Xout is the final output, obtained by multiplying
the dispatch weights matrix S with the expert representation matrix Y .

2.3 Swin Soft Mixture Transformer

Encoder. Our encoder module is based on Swin Transformer [14] architecture
with Soft MoE layers replacing FFN layers in Swin blocks at stages 2, 3, and
4. Having the input of previous layer zl−1 ∈ Rm×d, the outputs for those stages
are calculated as follows

ẑl = W-MSA(LN(zl−1)) + zl−1, zl = Soft-MoE(LN(ẑl)) + ẑl

ẑl+1 = SW-MSA(LN(zl)) + zl, zl+1 = Soft-MoE(LN(ẑl+1)) + ẑl+1,
(5)

where LN refers to the layer-norm layer, W-MSA, and SW-MSA represent
window-based multi-head self-attention with regular and shifted windows, re-
spectively, following the original Swin ViT implementation.
Decoder. Our decoder module is based on the same architecture as the decoder
in the Swin UNETR model. Convolutional blocks are employed to extract out-
puts from each of the four blocks and the bottleneck. These extracted features
are then upsampled using deconvolutional layers and concatenated with features
from a higher resolution level. Finally, convolution with a 1 × 1 × 1 kernel is
applied to map features to segmentation maps.

3 Experiments and Results

In this section, we describe the dataset used for training and evaluation of the
Swin SMT. Additionally, we provide implementation details along with qualita-
tive and quantitative results. Through an ablation study, we demonstrate the
importance of the Swin SMT component that has been integrated into the Swin
Transformer block.
Dataset. To train and evaluate our method, we use the publicly available
TotalSegmentator-V2 dataset [20]. The dataset contains 1,228 CT scans with
annotations for 117 major anatomical structures in WBCT images. It includes
scans of the WBCT, as well as thoracic, abdominal, neck, and pelvic scans. Ad-
ditionally, the dataset contains clipped sub-volumes corresponding to these body
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Table 1. Quantitative results comparing Swin SMT with several state-of-the-art meth-
ods on the test set of TotalSegmentator-V2 are presented. We compare model param-
eters (in millions, M), inference time (in seconds, s), and segmentation performance
results using DSC (%). Due to limited space, we divided the 117 classes into sub-
groups: organs, vertebrae, muscles, ribs, vessels, and the average of all these classes.
The best-performing results are highlighted in bold. (*) denotes statistically significant
differences between Swin SMT and compared state-of-the-art methods.

Method Params (M) Time (s) Organs ↑ Vertebrae ↑ Muscles ↑ Ribs ↑ Vessels ↑ Overall ↑
UNETR [3] 102.02 35 73.84 60.70 82.35 69.27 61.49 70.88 (*)
SwinUNETR-S [19] 18.34 15 78.21 63.43 85.02 69.98 62.23 73.90 (*)
nnFormer [22] 149.30 99 79.26 73.87 74.97 74.03 74.97 75.48 (*)
DiNTS [5] 147.00 150 80.05 71.42 85.32 73.71 70.13 77.64 (*)
UNesT [21] 87.30 45 80.75 71.93 86.43 72.79 69.61 77.70 (*)
3D UX-Net [9] 53.00 74 83.03 79.54 86.99 82.54 75.01 82.53 (*)
SwinUNETR-B [19] 72.76 37 83.46 79.76 87.57 82.61 75.23 82.81 (*)
nnU-Net [7] 370.74 300 82.02 82.89 86.98 85.27 75.51 83.44 (*)
SwinUNETR-L [19] 290.40 145 83.26 82.02 87.99 83.82 75.60 83.59 (*)
3D RepUX-Net [10] 65.80 80 80.85 84.00 87.63 84.22 75.91 83.81 (*)
Universal Model [13] 62.25 39 82.25 84.46 87.58 86.49 76.11 84.02 (*)
Swin SMT (ours) 170.78 60 83.70 83.03 88.70 86.60 77.54 85.09

parts. We resample all scans to 1.5 × 1.5 × 1.5 mm3 isotropic resolution. We
follow the original data split [20] that uses 1082, 57, and 89 cases for training,
validation, and testing, respectively.
Implementation details. We randomly crop a patch size of 128 × 128 × 128
from around the input CT scans. Training is conducted using the batch size
of 1 per GPU and the AdamW optimizer with a warm-up cosine scheduler for
1000 epochs. As a loss function L, we use a sum of Dice and Cross-entropy loss
defined as L = LD + ΛLCE , where LD, LCE are Dice and Cross-entropy loss,
respectively. A grid search optimization in the range [0.5, 1.0] was performed,
which estimated optimal value Λ = 1. An initial learning rate is set to 1 × 10−4,
and the weight decay is set to 1 × 10−5. We adopt data augmentations of in-
tensity, rotation, and scaling on the fly during training. For training, we use a
DGX workstation equipped with 8 × NVIDIA A100 40GB GPUs, utilizing the
Distribution Data Parallel methodology. The intensity of the Hounsfield Unit
was clipped to the range [-1024, 1024] and linearly scaled to [0,1]. During the
inference, we use a sliding window with an overlap of 0.5 and a Gaussian ker-
nel. To compare the inference times, we use a scan with the dimensions of [300,
300, 422]. We implement Swin SMT using Python 3.9, PyTorch 2.1 [17], and
MONAI 1.2.0 [2]. We evaluate segmentation performance using the Dice Simi-
larity Coefficient (DSC). We perform a one-way analysis of variance (ANOVA)
to assess the significance of differences among the performance metrics of Swin
SMT segmentation performance. We use p < 0.05 as a threshold for statistically
significant differences.
Quantitative results. To assess the effectiveness and performance of Swin
SMT, we conduct a comprehensive analysis with several state-of-the-art meth-
ods, i.e., nnU-Net [7], UNETR [3], 3D UX-Net [9], three configurations of Swin
UNETR-based (S, B, and L) [19], 3D RepUX-Net [10], nnFormer [22], DiNTS [5],
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a) b)

Fig. 3. a) Distribution of the quantitative results of Swin SMT for each subgroup
within WBCT images. The partial and full body part CT scans denote cropped (i.e., a
sub-volume of a thoracic or abdominal) and entire body part (i.e., thoracic, abdominal,
or whole-body) CT scans, b) Distribution of the average DSC against inference time
(in s). The inference time calculations are based on an input patch of 128 × 128 × 128
with a sliding window algorithm and overlay of 0.5. The size of each circle indicates
the number of parameters (in M).

UNesT [21], and Universal Model [13] using the test set of TotalSegmentator-
V2. To ensure a fair comparison, all models are trained under identical hard-
ware settings. To enhance the performance parity among the compared methods,
we employ the same hyperparameters, including optimizers, learning rates, and
learning rate schedulers, following the configurations presented in their original
works. Quantitative results for the TotalSegmentator’s-V2 test set are presented
in Table 1. Our proposed Swin SMT demonstrated superior segmentation per-
formance across all subgroups except for vertebrae. Nevertheless, the Swin SMT
achieves a higher average DSC of 85.09% across all 117 classes. During inference,
our Swin SMT, with 170.78 million parameters, achieves a 60-second processing
time. The one-way ANOVA revealed statistically significant differences between
other state-of-the-art methods and Swin SMT (p < 0.05).

Ablation study. We conduct an ablation study to investigate the impact of
varying the number of experts on the segmentation performance of the Swin
SMT. We train five configurations as follows. First, we train the baseline method
– Swin UNETR-B. Then, we swap FFN with Soft MoE in the Swin ViT block
with 4, 8, 16, and 32 experts (n), respectively. Table 2 shows the results of
an ablation study on the TotalSegmentator-V2 test set. The baseline method
achieves a DSC of 82.81%. The incorporation of the Soft MoE (n = 4) into the
baseline improved segmentation performance by 0.92%. Further increasing the
number of experts to 2n, where n ∈ 3, 4, 5 improved the DSC by 0.25, 0.56,
and 1.36, respectively. The one-way ANOVA revealed statistically significant
differences between the baseline and configurations with n experts, where n
ranges from 4 to 32, including the best-performing configuration with n = 32
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Table 2. The ablation study investigates the impact of varying the number of experts
used in each Swin MoE block. We compare parameters (in millions, M), the number of
experts (Experts), and DSC (%). (*) denotes statistically significant differences between
the top-performing configuration with n = 32 experts and all other configurations.

Method Params (M) Experts (n) DSC (%) ↑
Baseline 62.19 0 82.81 (*)

+ Soft MoE (n = 4) 83.62 4 83.73 (*)
+ Soft MoE (n = 8) 87.01 8 83.98 (*)
+ Soft MoE (n = 16) 114.93 16 84.29 (*)
+ Soft MoE (n = 32) 170.78 32 85.09

experts (p < 0.05). Due to limited computational resources, we did not use >
n = 32 experts.
Performance analysis. Fig. 3(a) shows the distribution of the quantitative
results of Swin SMT for each subgroup of the WBCT images. We compare the
evaluation on the test set of TotalSegmentator-V2, where Partial body part CT
scan and Entire body part CT scan denote cropped (i.e., a sub-volume of a
thoracic or abdominal) and entire body part (i.e., thoracic, abdominal, whole-
body) CT scans, respectively. We can observe that the Swin SMT exhibits robust
segmentation performance on entire-body scans. However, when it comes to sub-
volumes, the model lacks contextual information and shows low performance on
context-related classes such as vertebrae, ribs, and vessels. In the supplementary
material, we provide qualitative results for both partial and entire-body scans.
We present both top-performing cases for each subgroup and qualitative errors
observed in WBCT scans, even when the quantitative results per scan (DSC
above 90%) are high.
Fig. 3(b) shows a speed-performance plot, indicating that Swin SMT presents a
trade-off between computational efficiency and segmentation performance com-
pared to several state-of-the-art methods while maintaining a high mean DSC
score of 85.09%. Unlike Swin SMT, which is 1.54 times slower than the Universal
Model (2nd best), it is 1.33, 2.42, and 5.0 times faster than the next three best-
performing methods, including 3D RepUX-Net, Swin UNETR-L, and nnU-Net,
respectively.

4 Conclusions

We proposed Swin SMT, a 3D Transformer-based method for segmenting ma-
jor anatomical structures from WBCT images. By incorporating Soft MoE into
the Swin Transformer block, Swin SMT effectively handles the complex and
diverse long-range dependencies inherent in WBCT images. It is designed to
model global features of the entire volume at various scales and intensities. A
comprehensive benchmark, to the best of our knowledge, for the first time, on
the publicly available TotalSegmentator-V2 dataset demonstrates superior per-
formance compared to several state-of-the-art methods. Our method has the
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potential to serve as a support tool in clinical environments for the fast and
accurate segmentation of major anatomical structures in WBCT images. In our
future direction, we will incorporate large-scale self-supervised pretraining to
enhance the performance of the segmentation model and evaluate its generaliz-
ability and transferability to external datasets.
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