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Abstract. Implicit functions have significantly advanced shape model-
ing in diverse fields. Yet, their application within medical imaging often
overlooks the intricate interrelations among various anatomical struc-
tures, a consideration crucial for accurately modeling complex multi-part
structures like the heart. This study presents ImHeart, a latent variable
model specifically designed to model complex heart structures. Lever-
aging the power of learnable templates, ImHeart adeptly captures the
intricate relationships between multiple heart components using a uni-
fied deformation field and introduces an implicit registration technique
to manage the pose variability in medical data. Built on WHS3D dataset
of 140 refined whole-heart structures, ImHeart delivers superior recon-
struction accuracy and anatomical fidelity. Moreover, we demonstrate
the ImHeart can significantly improve heart segmentation from multi-
center MRI scans through a retraining pipeline, adeptly navigating the
domain gaps inherent to such data.

Keywords: implicit fields · heart · shape modeling · multi-part struc-
tures · data-centric.

1 Introduction

Implicit functions have emerged as a potent tool for shape modeling across var-
ious fields, including CAD modeling [14,11,2] and medical imaging [27,29,19].
Compared to explicit shape modeling approaches, such as point clouds [17,28]
and meshes [7,24], implicit / hybrid methods offer significant flexibility and
scalability [26]. However, within the medical domain, the application of these
techniques has largely been limited to modeling single-class shapes, without ad-
equately addressing the interrelations among different structures.

In heart modeling, accurately representing the connections between struc-
tures such as the left ventricle (LV) and the left atrium (LA) is essential, with
the LV myocardium ideally enveloping parts of the LV. This aspect has been
significantly overlooked thus far. The straightforward use of single-class implicit
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functions to model these components in isolation often proves inadequate for cap-
turing the complex interrelations among different heart parts, potentially lead-
ing to topological discrepancies. While some studies have addressed the issue of
topological correctness in biomedical imaging [13,6] and implicit functions [10],
their focus has predominantly been on analyzing (pairwise) connectivity. This
approach becomes fragile for modeling the whole-heart structure, which involves
up to eight (or more) types of structures with various topological relationships.

Inspired by template-based implicit methods [30,19,27], which model target
shapes through deformed learnable templates, we recognize the utility of using
learnable templates to implicitly capture relationships among multiple classes.
Specifically, we characterize the multi-class relationship with a multi-class tem-
plate and model it using a unified deformation field to maintain the relative
relationships among multiple classes as much as possible. Furthermore, consid-
ering the variability in poses often encountered in medical data collection, we
introduce a novel implicit registration technique that facilitates simple modifica-
tions for achieving registration within the implicit field. Further inspired by [30],
we also incorporate an implicit residual to model the remaining shape compo-
nents. While theoretically not precise, this practical strategy has proven effective.
Compared to methods that come with theoretical guarantees, such as diffeomor-
phisms [19], we find relaxing these constraints can enhance the representational
capability without increasing topological errors.

To conduct this study, we compiled a dataset of whole-heart structures,
named WHS3D, consisting of 140 refined shapes. Based on WHS3D, we in-
troduce ImHeart, a latent variable model designed to capture and deform the
complex eight structures of the heart. This model builds upon the foundation of
implicit deformable template methods [27]. Our findings demonstrate that Im-
Heart is capable of effectively representing intricate heart structures, achieving
superior reconstruction metrics while maintaining anatomical precision.

As a practical application, we illustrate how ImHeart, in conjunction with an
imperfect heart segmentation model, can enhance the quality of heart segmen-
tations derived from multi-center cardiac MRI scans. We employ a potentially
undertrained neural network to produce an initial segmentation; then, we fit Im-
Heart model to this initial output to refine the segmentation, and subsequently
re-train the segmentation network using the refined output. This data-centric
AI pipeline, yields anatomically accurate segmentations, serving as a crucial ap-
plication. In a clinical setting, one rarely has enough multi-center training data
to properly train a segmentation network to handle the quirks of the particular
apparatus being used to acquire the images. This method makes it possible to
bridge the domain gap these quirks introduce. Moreover, with high-quality an-
notations, it is compatible to integrate other techniques such as domain adapta-
tion [5] and test-time training [20,22] to further improve the model performance.
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2 Methods

2.1 Preliminaries

Implicit shape representations model shapes by assigning 3D coordinates to a
shape indicator, typically choosing between occupancy or signed distance. In this
work, we opt for the former for its simplicity. We employ linear interpolation,
rendering our training occupancy field analogous to a truncated signed distance
field. For a shape S, this mapping can be formally described as follows:

F(h,p) = o : Rc × R3 → R , (1)

where h represents a c-dimensional latent vector that encodes the shape S,
p(x, y, z) ∈ R3 denotes a query point, and F , implemented via a deep neural net-
work, outputs the occupancy probability o ∈ [0, 1]. Given a set of training data,
both F and the vector h corresponding to each shape can be learned through
various methods [14,16]. In this study, we adopt an auto-decoding approach [14].

Beyond methods that directly generate shape indicators, there exist stud-
ies that conceptualize shapes as deformations from templates [3,30,19,27,25]. In
these works, the function F is a composite of two functions, T and D:

F(h,p) = T (D(h,p)) , (2)

where D : Rc ×R3 → R3 is a function that transforms a query point p into new
coordinates, and T : R3 → R is a learned implicit function akin to F in the
original formulation but is specialized to learn a single shape. The functions D
and T can be realized in various manners [19,27,30]. We use the approach where
learning multiple templates is essential [27], we define T as an Implicit Template
Network and D as an Implicit Deformation Network :

F(h,p) = T (t,p+D(d,p)) , (3)

with t and d being distinct vectors derived from h. Notably, T incorporates
an additional parameter, enabling the selection of one among several potential
templates using a straight-through estimator [1].

2.2 ImHeart: Implicit Field on Multi-Class Heart Structure

ImHeart is constructed based on the framework outlined in Eq. 3. However, we
extend it to accommodate multi-class scenarios by applying a unified deforma-
tion to multi-class templates. Additionally, we introduced an implicit registration
technique to address the variability in poses frequently observed in the collection
of medical data. Furthermore, we incorporate an implicit residual component to
capture the remaining shape elements that are not addressed by the deformation
or template alone. The complete ImHeart model is depicted in Fig. 1. Given a
latent vector h, we define t = t(h), d = d(h), and r = r(h) as distinct vectors
derived from h. These vectors are processed through their respective implicit
networks—T for templates, D for deformation, and R for residuals. Following
this setup, we provide a formal description of our ImHeart model.
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Fig. 1: ImHeart. Given a latent vector h, we initiate the process by deriving
three key vectors: t, d, and r. Each of these vectors is then processed through
their respective implicit networks—T for templates, D for deformation, and R
for residuals. To address the variability often observed in medical imaging due
to different poses, an optimizable matrix A is applied to the deformed grid.

Unified Deformation on Multi-Class Templates. We employ a unified deforma-
tion field D : Rc×R3 → R3 applied to a multi-class template, T : Rc×R3 → RM ,
where M represents the number of classes of interest. In our case, focusing on 8
heart structures plus the background, we have M = 9. Through this approach,
we model the relationships among multiple classes using templates and maintain
these relationships via a unified deformation field.

Implicit Registration. To accommodate the variability in poses commonly seen
in medical data collection, we introduce an implicit registration technique. This
involves an affine transformation on the deformed coordinates, defined as:

p′ = R · (p+D(d,p)) + b , (4)

where A = (R,b) with R ∈ R3×3 being a freely optimized affine matrix and
b ∈ R3 a shift vector. This means our method includes rotation, scaling and
shearing. Per-sample A can be optimized together with the corresponding h
using auto-decoding, with R initially set to the identity matrix and b to zero.
There are also related idea in previous studies for neural rendering [15].

Implicit Residual. Drawing inspiration from prior work [30], we further integrate
an implicit residual component through an Implicit Residual Network R : Rc ×
R3 → RM . This allows us to model the remaining shape components more
accurately. The final model output is then given by:

F(h,p) = T (t,p′) +R(r,p) , (5)

ensuring a comprehensive representation of the complex heart structures by
blending the template deformation with residual shape adjustments.

Implementation Details. To efficiently process 3D images, we implement coor-
dinates through a D × H × W × 3 3D grid. On the architecture, we adopt a
convolutional feature decoder inspired by the ConvONet [16], which leverages
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Fig. 2: Visualization of WHS3D Dataset. We show both the source shapes
using semi-automatic methods [31,4] and after our repairing.

the spatial hierarchies and local features inherent in 3D shapes. Regarding model
training, considering our method is an extension of ImplicitAtlas [27], we main-
tain consistency with its training recipe.

2.3 Data-Centric Pipeline to Generate Annotations

We demonstrate the capability of ImHeart to improve the quality of heart seg-
mentations obtained from multi-center cardiac MRI scans. The approach in-
volves initially relying on a segmentation network trained on some data to obtain
an initial segmentation on the target data. In real practice, due to the significant
domain gaps and limited training data characteristic of multi-center data, the
segmentation results from the initial network are often suboptimal. Subsequently,
we refine these initial segmentations by optimizing the latent vector of ImHeart
to reconstruct the initial segmentation. The reconstructed result is then used as
a pseudo ground truth to re-train the segmentation network on the target data.
Notably, this pipeline is data-centric, aiming to generate anatomically accurate
annotations on the target dataset. Afterwards, it is still possible to integrate
other techniques such as domain adaptation [5] and test-time training [20,22] to
further improve the model performance.

3 Datasets

3.1 WHS3D: Multi-Class Shapes for Whole-Heart Structure

To train ImHeart, we compiled a high-quality heart shape dataset that en-
compasses 8 structures: myocardium of the left ventricle, left ventricle, right
ventricle, left atrium, right atrium, pulmonary artery, ascending aorta, and de-
scending aorta. The data originate from heart segmentations performed using
semi-automatic methods [31,4] across multiple source datasets [21,18,12]. These
annotations, while comprehensive, contained numerous artifacts.

To address the issue, we employed Neural Annotation Refinement [29], a
technique designed to repair and refine annotation quality. Furthermore, we ap-
plied several empirical rules aimed at ensuring the topological accuracy of the
labels. The rules include several morphological operations to ensure that the
8 classes each have only 1 connected component (CC). If not, we retain the
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Fig. 3: Domain Gap between MMWHS-MRI [32] and In-House Data.

largest CC after a closing operation. Additionally, we ensure connectivity be-
tween classes: ventricle vs atrium, aorta vs left ventricle, and right ventricle vs
pulmonary artery. Since these labels come from real data, disconnected cases are
rare (usually due to annotation noise), and we slightly dilate to ensure proper
connection. Fig. 2 visualizes some samples, including the source and repaired.3

3.2 Downstream Cardiac Segmentation Datasets

To validate the effectiveness of our proposed retraining pipeline based on Im-
Heart, we utilized two downstream cardiac segmentation datasets. MMWHS-
MRI [32], is an widely used cardiac MRI dataset that includes all WHS3D
structures except for the descending aorta. This dataset comprises a total of
20 annotated samples. We allocated 15 of these for the training set and reserved
5 for testing. Additionally, we employed an in-house dataset consisting of 15 car-
diac MRI cases obtained from a clinical radiology department, which similarly
encompasses the same seven labels as those present in the MMWHS-MRI.

Due to differences in imaging conditions, there exists a significant domain
gap between the in-house data and the MMWHS-MRI dataset, as illustrated in
Fig 3. This gap is particularly evident in the lower resolution and blurred edges of
the in-house data, providing a substantial ground for testing the transferability
and adaptability of the ImHeart model to real-world clinical data.

4 Experiments

4.1 Heart Shape Modeling

Settings. To evaluate the shape modeling performance of ImHeart on theWHS3D
dataset, we adopted a setup similar to the conventional auto-decoding approach [14],
dividing WHS3D into 120 known (training) and 20 unknown (test) samples. Our
performance analysis focuses on the unknown shapes at a resolution of 128. Be-
sides modeling on the eight structures of WHS3D as a whole, we also conducted
a separate modeling for the myocardium (Myo) for analysis.

We utilized two sets of metrics for our analysis. Volumetric Dice Score (DSC):
A standard metric ranging from 0 to 1, higher is better. We report the micro-
average DSC across multiple classes. Number of Connected Components (CC):

3 The WHS3D dataset is available at cvlab.epfl.ch/data.

cvlab.epfl.ch/data
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Table 1: Heart Shape Reconstruction Results on WHS3D. We compare
with several baselines with or without templates. In our methods, Sep/Uni de-
notes separate/unified deformation, and IR denotes implicit registration.

Methods
Single-Class (Myo) Multi-Class (Avg-8)

DSC ↑ CC ↓ DSC ↑ CC ↓

w/o Template
DeepSDF [14] 0.866 1.15 0.863 1.74
NeAR [29] 0.913 1.00 0.927 1.59

w/ Template
DIT [30] 0.899 1.00 0.915 1.21
NDF [19] 0.896 1.00 0.904 1.13
ImplicitAtlas [27] 0.904 1.00 0.919 1.23

ImHeart Sep
0.939

1.00 0.920 1.26
ImHeart Uni 1.00 0.941 1.04
ImHeart Uni+IR 0.938 1.00 0.956 1.03

Fig. 4: Visualization of Generated Heart Samples by ImHeart.

We design this metric to serve as a simple assessment of topological correct-
ness. We calculate the average number of connected components across different
classes, lower is better. The ideal value is 1, indicating that each class has only
one connected component, which aligns with the expected anatomical reality.
All results are averaged over three experiments.

As comparison, we analyzed a range of baseline methods, with or without
templates. These baselines are trained separately on the multiple classes. Ad-
ditionally, ImHeart was examined in various configurations, including separate
(Sep) and unified (Uni) deformation fields, as well as implicit registration (IR).

Results. The results presented in Tab. 1 indicate that, generally, methods based
on templates contribute to a reduction in CC, suggesting that templates, regard-
less of their specific design, benefit the topology of the modeled structures. It is
noteworthy that NDF [19], despite its theoretical topological guarantees, does
not perfectly address all issues in practice and has a relatively lower DSC.

Unified deformation significantly enhances the model performance in multi-
class reconstruction, compared to the separate one (p=0.0127, t-test). Further-
more, IR can lead to additional improvements (p=0.0162, t-test), although IR
does not have a substantial impact when modeling a single class.
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Table 2:Downstream Segmentation Results on MMWHS-MRI [32] and
In-House Data. DSC: Dice score. CC: number of connected components.

Methods
MMWHS-MRI (Avg-7) In-House (Avg-7)

DSC ↑ CC ↓ DSC ↑ CC ↓

Initial Baseline 0.871 1.17 0.673 3.06
Näıve Retraining 0.864 1.09 0.635 2.70
ImHeart Retraining 0.874 1.03 0.777 1.08

In Fig. 4, we visualize several samples generated by ImHeart. These visualiza-
tions showcase the model capability to produce anatomically accurate samples.

4.2 Downstream Application: Segmentation on Unseen Dataset

In Tab. 2, we report the performance on downstream data using the same eval-
uation metrics. Additionally, in Fig. 5, we visualize the 2 sample results.

We establish an initial baseline by training a model on the MMWHS-MRI
dataset. Specifically, we use STU-Net [8] pretrained on TotalSegmentator [23],
which adopts the training strategy of nnU-Net [9]. While this initial baseline
demonstrates strong performance on the MMWHS-MRI test set (both in terms
of DSC and CC), its direct application on the In-House data results in poor
performance due to the large domain gap (as shown in Fig. 3).

Following this, we apply our proposed ImHeart Retraining pipeline to refine
labels, on MMWHS-MRI and In-House datasets, respectively. It is observed that,
even on the MMWHS-MRI dataset, there is still a slight enhancement, especially
in the reduction of CC. On the In-House dataset, the improvements in both DSC
and CC are significant compared to the initial baseline. The visualizations in
Fig. 5 further illustrate that the cardiac structures generated using our method
appear anatomically normal.

Notably, employing a Näıve Retraining strategy, which uses the predictions
from the initial baseline without ImHeart refinement, does not improve perfor-
mance; it may even degrade it. This highlights the value of integrating ImHeart
into the retraining pipeline, as it provides anatomical knowledge that signif-
icantly enhance segmentation accuracy, particularly in overcoming challenges
posed by domain gaps.

5 Conclusion

We introduce ImHeart, a novel approach to multi-class heart shape modeling by
integrating learnable templates with a unified deformation field, addressing the
complex interrelations among multiple heart structures. Developed on a dataset
of 140 whole-heart structures, it achieves high accuracy and anatomical precision.
Furthermore, ImHeart significantly enhances heart segmentation in multi-center
MRI scans, overcoming domain gaps through a retraining pipeline.
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Initial Baseline Naïve Retraining ImHeart Retraining

Fig. 5: Visualization of the Predicted Results of Initial Baseline, Näıve
Retraining and ImHeart Retraining.
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13. Mosinska, A., Marquez-Neila, P., Koziński, M., Fua, P.: Beyond the pixel-wise loss
for topology-aware delineation. In: Conference on Computer Vision and Pattern
Recognition. pp. 3136–3145 (2018)

14. Park, J.J., Florence, P., Straub, J., Newcombe, R.A., Lovegrove, S.: Deepsdf: Learn-
ing Continuous Signed Distance Functions for Shape Representation. In: Confer-
ence on Computer Vision and Pattern Recognition (2019)

15. Park, K., Sinha, U., Barron, J.T., Bouaziz, S., Goldman, D.B., Seitz, S.M., Martin-
Brualla, R.: Nerfies: Deformable neural radiance fields. In: International Conference
on Computer Vision. pp. 5865–5874 (2021)

16. Peng, S., Niemeyer, M., Mescheder, L., Pollefeys, M., Geiger, A.: Convolutional
occupancy networks. In: European Conference on Computer Vision. pp. 523–540.
Springer (2020)

17. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: Deep learning on point sets for 3d
classification and segmentation. In: Conference on Computer Vision and Pattern
Recognition. pp. 652–660 (2017)

18. Schaap, M., Metz, C.T., van Walsum, T., van der Giessen, A.G., Weustink, A.C.,
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