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Abstract. To address overfitting and enhance model generalization in
gastroenterological polyp size assessment, our study introduces Feature
Selection Gates (FSG) alongside Gradient Routing (GR) for dynamic
feature selection. This technique aims to boost Convolutional Neural
Networks (CNNs) and Vision Transformers (ViTs) by promoting sparse
connectivity, thereby reducing overfitting and enhancing generalization.
FSG achieves this through sparsification with learnable weights, serving
as a regularization strategy. GR further refines this process by optimiz-
ing FSG parameters via dual forward passes, independently from the
main model, to improve feature re-weighting. Our evaluation spanned
multiple datasets, including CIFAR-100 for a broad impact assessment
and specialized endoscopic datasets (REAL-Colon [13], Misawa [10], and
SUN [14]) focusing on polyp size estimation, covering over 200 polyps in
more than 370K frames. The findings indicate that our FSG-enhanced
networks substantially enhance performance in both binary and triclass
classification tasks related to polyp sizing. Specifically, CNNs experi-
enced an F1 Score improvement to 87.8% in binary classification, while
in triclass classification, the ViT-T model reached an F1 Score of 76.5%,
outperforming traditional CNNs and ViT-T models. To facilitate further
research, we are releasing our codebase, which includes implementations
for CNNs, multistream CNNs, ViT, and FSG-augmented variants. This
resource aims to standardize the use of endoscopic datasets, providing
public training-validation-testing splits for reliable and comparable re-
search in gastroenterological polyp size estimation. The codebase is avail-
able at github.com/cosmoimd/feature-selection-gates.

Keywords: Feature Selection Gates · Gradient Routing · Attention
Gates · Endoscopy · Medical Image Processing · Computer Vision

1 Introduction

Deep learning (DL) techniques, particularly convolutional neural networks and
transformers, have significantly advanced the analysis of endoscopic imaging [3]
[18] [22] [25]. Nonetheless, these models encounter challenges such as overfitting
when applied to the typically smaller datasets found in endoscopy, in contrast
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Fig. 1. Feature Selection-Attention Gates (FSG) Integration in Deep Learning Mod-
els. (a) Conceptual design of FSG. (b) Application of FSG in a multi-stream CNN
architecture, with each stream being optional. (c) Embedding of FSG within a ViT
block, positioned after the multihead attention and the MLP for enhanced feature re-
weighting.

to larger datasets like ImageNet. These challenges stem from various factors,
including privacy concerns, the need for expert annotations, associated costs,
and the inherent variability of endoscopy imaging modalities. Moreover, the in-
frequency of certain conditions, such as large colorectal polyps, intensifies data
imbalance issues, further complicating the development of reliable and precise
DL models for endoscopic image analysis [7] [8] [15] [2] [4] [23].

A review of related work on polyp size estimation underscores the critical
nature of accurate assessment for the effective management and surveillance of
colorectal cancer [35]. The size of a polyp significantly influences its potential for
malignancy, necessitating accurate measurement. According to guidelines from
prominent endoscopy organizations, including the American and European So-
cieties for Gastrointestinal Endoscopy (ASGE and ESGE ), polyps can be clas-
sified in D-S-L categories based on their size: (D) Diminutive polyps (5mm or
smaller), (S) Small polyps (between 5mm and 10mm), and (L) Large polyps
(10mm or larger). The societies particularly emphasize the removal and subse-
quent histopathological examination of Large polyps due to their increased risk of
cancer, underscoring the critical role of precise size determination [32,33]. How-
ever, there is notable variability in manual size estimations by endoscopists [4],
which poses a risk of mismanagement [34]. The development of automated es-
timation techniques via computer vision aims to mitigate this issue, providing
more consistent measurements through machine learning models trained on a
diverse array of imaging data [35]. In pursuit of standardizing polyp size esti-
mation, our work leverages state-of-the-art 2D and 3D estimation methodolo-
gies [2,15,6,5] and enhances dataset diversity [13,10,14]. This dual approach aims
to refine the accuracy of automated polyp-size estimation, addressing both the
technological and data-related challenges inherent in this domain.
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Building upon this foundation, we introduce Feature Selection-Attention
Gates (FSG) and Gradient Routing (GR). These innovative mechanisms, tai-
lored for the gastroenterological polyp size assessment domain, counter overfit-
ting and enhance model generalization. Drawing from [19,17,26,21,20], our ap-
proach promotes sparse connectivity in deep networks and uses a dual forward
pass strategy for gradient routing. This fosters model sparsity and efficiency
while selectively emphasizing pertinent features [19,1]. Figure 1 illustrates the
integration of FSG in DL frameworks. Fig. 1(a) outlines the FSG’s conceptual
design, employing sigmoid-normalized weights ranging between 0 and 1. Fig.
1(b) integrates FSG into CNNs in a multi-stream setup, accommodating various
input types like RGB, Depth, and Location Maps. Fig. 1(c) illustrates FSG’s
incorporation in the ViT model, placing one FSG after the multihead attention
and another following the MLP block.

The proposed approach was evaluated, with our primary focus on public
endoscopic datasets, consisting of 232 polyps across more than 370K frames in
the REAL-Colon [13], Misawa [10] and the SUN database [14]. These databases
encompass realistic clinical scenarios, such as variable lighting and obstructions.
Additionally, to assess the impact of FSG on ViT performance in a more general
context, we also conducted evaluations on CIFAR-100. The FSG ResNet18 (R18)
and ViT models showed improved accuracy, achieving an accuracy of 75.2%
and 83.8% respectively, outperforming by +1.3% and +5.8% their baselines and
SotA [30,28]. In polyp size estimation experiments, we compared methods with
SotA using RGB, Depth [31], and Location Maps in CNNs with Dropout and
Batch Normalization. Hybrid methods like CBAM [36] were excluded to focus
on pure CNN and transformer architectures.

In the bias-variance tradeoff analysis, FSG models showed superior perfor-
mance with higher F1 scores and average sensitivity-specificity in a 6-fold ex-
periment. In a separate, consolidated evaluation across all dataset folds, FSG
models consistently outperformed standard models in both binary [7,8] (under
and over 10 mm polyps) and triclass classifications (Diminutive-Small-Large).

Across 12 methods compared, the highest average performances were from
FSG MultiStream-R18 (LOC+DPT) at 66.1% and FSG ViT-T (RGB)
at 65.5%. Our findings indicate that ViT models without LOC maps or DPT
are preferred due to reduced error propagation. ViT Tiny, with 5.6M parame-
ters and 4.7G flops, is the most efficient. FSG integration significantly enhances
ViT’s performance in regression and classification. Our unique integration of the
following components to address overfitting in medical image analysis is a key
innovation. The main contributions of our work can be summarized as follows:

1. Feature Selection Gate (FSG): Acts as an online regularization tool to
enhance learning, reduce overfitting, and improve generalization.

2. Gradient Routing (GR): Optimizes FSG parameters separately from the
main model, allowing tailored learning rates and gradient clippings.

3. Enhancing Vision Transformers and CNNs: FSG enhances ViTs and
CNNs, including multi-input variants, for versatile processing of RGB, Depth
maps [31], and location maps.
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2 Methodology

2.1 Feature Selection-Attention Gates (FSG)

The FSG (in Fig.1) dynamically assigns weights to each feature within the model,
applicable to embeddings and channels in architectures such as Transformers and
CNNs. These weights, dynamically adjustable during the training process, are
normalized using a sigmoid function to ensure values range between 0 and 1.
This weighting mechanism facilitates focused learning, allowing the model to
prioritize more informative features and reduce the less relevant ones.

Given a set of input features X, represented as X = (x1, x2, . . . , xn), where
n is the number of features or the embedding size, and each xi for i = 1, 2, . . . , n
corresponds to a specific feature in the input data. Feature selection is per-
formed by introducing a set of weights F , denoted as F = (f1, f2, . . . , fn). These
weights are derived from the raw feature weights W = (w1, w2, . . . , wn) through
a transformation. Specifically, we apply a sigmoid function σ to each raw weight
wi to obtain the corresponding FS weight fi. The sigmoid function, defined as
σ(z) = 1

1+e−z for any input z makes the weights suitable for FS by scaling them
between 0 and 1. These transformed weights are referred to as FSG-scores.

The FSG-scores are then applied to the original input features X to obtain
the relevant version of the input, denoted as Xfsg. This application is performed
through the Hadamard product of F and X, effectively scaling each feature xi

by its corresponding FSG-score fi (see Fig.1). Mathematically, this process is
encapsulated in the following equation:

Xfsg = F ⊙X = f1 · x1, f2 · x2, . . . , fn · xn

= σ(w1) · x1, σ(w2) · x2, . . . , σ(wn) · xn,
(1)

where ⊙ denotes the Hadamard product, and each fi = σ(wi) is the result
of applying the sigmoid function to the raw weight wi, which is then multiplied
by the corresponding input feature xi to achieve the feature selection effect.

Unlike attention mechanisms that use softmax for input weighting, FSG in-
dependently re-weights features with scores from 0 to 1, not summing to 1. This
enables synergy with attention in ViT architectures, enhancing performance (see
FSG-GR weight distributions in supplementary material).

2.2 Gradient Routing for Online Feature Selection

Gradient Routing (GR) in our model employs a dual-phase optimization ap-
proach with distinct optimizers for different model components. Initially, GR
updates the FSG parameters. This step focuses on refining feature weights only.
Following this, GR updates the main model parameters using a different opti-
mizer, based on the adjusted state from the FSG phase. The iterative nature of
GR aligns with the principles of gradient descent and backpropagation, starting
with the fine-tuning of FSG parameters and then progressing to the main model
parameters. The small derivatives introduced by the sigmoid function in deep
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layers can lead to vanishing gradients, minimally updating early layer weights. To
counter this, a gradient clipping strategy with different thresholds for FSG and
the main model can be used. Higher thresholds for FSG address the sigmoid’s
limitations, and lower ones for the main model ensure stability. This method
ensures efficient backpropagation across the network [24], optimizing learning in
both FSG and the main model components. The GR method utilizes a dual-
phase optimization with gradient clipping for FSG and main model parameters,
diverging from the layer-wise pre-training and fine-tuning strategy described in
[27]. The gradient updating process in GR can be represented as:

θt+1
fsg = θtfsg − ηfsgclip(∇fsgL(θ

t
fsg , θ

t
main , D),Thfsg) (2)

θt+1
main = θtmain − ηmainclip(∇mainL(θ

t
main , θ

t+1
fsg , D),Thmain) (3)

where θ
(t)
main and θ

(t)
fsg are the parameters of the main model and FSG at iteration

t, ηmain and ηfsg are the respective learning rates, ∇L denotes the gradient of
the loss function, D is the training data, and clip(·,Th) is the gradient clipping
function with specified thresholds.

3 Experiments and Results

Images were resized to 384 × 384 and normalized using dataset-specific mean
and standard deviation computed on the training data, ensuring dataset-specific
color adjustments. Circular cropping was used to isolate the central part of an
image into a circular shape, thereby concentrating analysis on relevant areas and
eliminating peripheral distractions. Standard data augmentation included rota-
tions, color adjustments, and noise addition. Polyp sizes normalized to [−1,+1]
range were used for stable regression training. A domain-specific weighted Huber
Loss addressed the imbalanced distribution of polyp sizes within the dataset:

A =


α1, if T1 < y ≤ T2

α2, if y > T2

1, otherwise
LW = 1

N

∑N
i=1(Huber(xi, yi) · Ai)

(4)
with (T1, α1) = (5, 2) and (T2, α2) = (10, 3), and N representing the mini-batch
size. The Adam optimizer was utilized, with a learning rate set in the range of
[10−3, 10−5], and weight decay specified within the interval [10−5, 10−8]. Gradi-
ent clipping was set between 5 to 10 for CNNs, and a cosine annealing scheduler
with warm restarts was applied for learning rate control. Parameters within the
FSG modules were initialized using the Xavier method. For ViT models, gradient
clipping threshold was set to 128 to mitigate the vanishing gradient issue [24]
(see Supplementary Material for experimental setup). We reported model pa-
rameters in Table 2 and conducted experiments using a Tesla V100-PCIE GPU
with 32GB memory. ResNet-18 and ViT-Tiny models operate in real-time, re-
quiring approximately 2GB for training and inference with a batch size of 1
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Table 1. Distribution of Frames (#Polyps) in Endoscopic Dataset Folds from REAL-
Colon [13], Misawa et al.’s Database [10], and the SUN Dataset [14]

Categories Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6
Diminutive 46,982 (29) 49,648 (30) 44,640 (30) 54,707 (30) 49,256 (29) 51,784 (29)

Small 9,535 (5) 11,985 (6) 6,098 (6) 827 (5) 1,255 (6) 4,538 (4)
Large 6,298 (5) 24,189 (3) 1,086 (3) 6,459 (4) 1,105 (3) 1,648 (5)
Total 62,815 (39) 85,822 (39) 51,824 (39) 61,993 (39) 51,616 (38) 57,970 (38)
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R18 in [28] 74.1%

R18 (re-train) 73.9%
R18+FSG 75.2%

ViT-T in [30] 75.2%
ViT-T (re-train) 78.0%
ViT-T+FSG 83.8%

Fig. 2. ViT/R18 Performance on CIFAR-100 compared with SotA [30,28].

on 384x384x3 images. The FSG adds minimal parameters and an imperceptible
increase in FLOPS, as detailed in Table 2. The experiments were conducted us-
ing the CIFAR-100, providing a standard benchmark for assessing classification
accuracy (100 classes, 50K training images, 10K test images) and three endo-
scopic databases, namely, the REAL-Colon [13], Misawa et al.’s database [10],
and the SUN dataset [14], consisting of a total of 232 unique polyps, represented
by 372,040 frames. This dataset is partitioned into six folds to facilitate k-fold
cross-validation. The database’s overview, detailed in Table 1, highlights the dis-
tribution of lesions in the dataset, revealing a significant imbalance among the
various types of lesions; for more specifics, please see [13,10,14]. For the sizing
task, we used a 6-Fold cross-validation, allocating one fold each for testing and
validation, and four folds for training in each cycle.

Exp. 1: Evaluating the ViT-Tiny and ResNet-18 on CIFAR-100

Our experimental analysis on the CIFAR-100 dataset highlights the significant
impact of integrating FSGs with CNN and Transformer architectures, specifi-
cally ResNet-18 (R18) and Vision Transformer Tiny (ViT-T), on classification
accuracy. Initially, the R18 model reached a 73.9% accuracy, aligning with pre-
vious benchmarks [28]. Incorporation of FSG into R18 improved its accuracy to
75.2%, indicating a 1.8% improvement. For ViT-T, the initial accuracy stood at
78.0%, comparable to standards set in [30]. However, applying FSG to ViT-T
significantly increased its accuracy to 83.8%, marking a substantial 5.8% en-



Feature Selection-Attention Gates with Gradient Routing 7

Method Name Balanced Accuracy Avg. Sens-Spec F1 Score Global Average Params #flops
Value Variance Value Variance Value Variance of Metrics

R18 [16,28](RGB) 53.4% 1.4% 57.3% 1.0% 77.5% 1.8% 62.73% 11.2M 5.3G
FSG: R18 (RGB) 52.3% 0.7% 57.9% 0.5% 78.7% 2.0% 62.97% 11.3M 5.3G
R18 [12,31](DPT) 46.9% 1.0% 46.8% 1.6% 66.2% 5.0% 53.30% 11.2M 5.1G
FSG: R18 (DPT) 46.8% 0.4% 50.1% 0.3% 76.5% 2.1% 57.80% 11.2M 5.1G
R18 (LOC) 54.3% 1.7% 56.4% 1.3% 78.1% 2.3% 62.93% 11.2M 5.3G
FSG: R18 (LOC) 53.0% 1.2% 55.4% 0.9% 77.6% 1.7% 62.00% 11.3M 5.3G
MultiStream-R18 [9][RGB+DPT] 50.7% 1.3% 54.9% 0.8% 77.0% 2.2% 60.87% 22.4M 5.3G
FSG: MultiStream-R18 (RGB+DPT) 53.4% 1.3% 57.1% 0.9% 77.8% 2.5% 62.77% 22.5M 5.3G

MultiStream-R18 [9][LOC+DPT] 52.0% 0.7% 53.1% 0.4% 78.2% 1.7% 61.10% 22.4M 5.3G
FSG: MultiStream-R18 (LOC+DPT) 53.5% 0.9% 56.0% 0.5% 79.5% 1.4% 63.00% 22.5M 5.3G
ViT-Tiny [11,30](RGB) 51.3% 1.2% 55.7% 0.6% 75.6% 2.0% 60.87% 5.6M 4.7G
FSG: ViT-Tiny (RGB) 54.9% 1.1% 59.5% 0.7% 79.1% 2.0% 64.50% 5.6M 4.7G

Table 2. Bias & Variance: Diminutive (<=5mm), Small (5-10mm), Large (>=10mm)

hancement over the baseline. These improvements underscore FSG’s capability
to selectively emphasize influential features, thereby optimizing model perfor-
mance across both architectures. This foundational assessment sets the stage for
applying FSG in more specialized tasks like polyp size estimation, demonstrat-
ing its potential to refine accuracy in complex image classification challenges.

Exp. 2: Polyp-Size Estimation. Bias-Variance Tradeoff Analysis

In our experimental setup, models were trained on four folds, with one fold
each for validation and testing, as per Table 1. The optimal model checkpoint is
chosen based on the lowest validation loss.

Table 2 presents a detailed bias-variance tradeoff analysis for models en-
hanced with FSGs using RGB, LOC, and DPT inputs. The integration of FSG
into the ViT model with RGB inputs increases Balanced Accuracy (BA) from
51.3% to 54.9%, improves Avg. Sensitivity-Specificity to 59.5%, and raises the F1
Score to 79.1%. This results in a global average metric improvement of +3.63%
relative to its non-FSG counterpart, achieving 64.5%. In the case of the R18
model equipped with DPT inputs, the integration of FSG results in an increase
of Avg. Sensitivity-Specificity by +3.3% and an F1 Score by +10.3%, both com-
pared to the model’s performance without FSG. Applying FSG to the R18 model
with LOC inputs results in a slight decrease in BA by approximately 1%. The
combination of RGB and polyp location masks, which utilize ground truth (GT)
bounding boxes to create the location masks, represents an ideal input with
optimal feature selection by design. In this scenario, FSG had limited scope for
reweighting and selection as most relevant information was already incorporated.
For multi-stream configurations combining LOC and DPT inputs, the enhance-
ments include a BA increase to 53.5% and the attainment of the highest F1
Score at 79.5%. These improvements are due to FSG and GR. FSG promotes
sparse connectivity, reducing overfitting and improving generalization. GR op-
timizes FSG with dual forward passes, focusing on key features and eliminating
redundancies when the main model parameters are frozen. This ensures the
model focuses on relevant features, enhancing predictive accuracy and robust-
ness across input modalities.
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Binary Classification Triclass Classification Overall
Method Name Bal. Acc. F1 Score Sens.-Spec. Avg. Bal. Acc. F1 Score Sens.-Spec. Avg. Score
R18 [16,28](RGB) 57.58% 87.22% 70.20% 71.67% 47.62% 74.84% 54.18% 58.88% 65.2%
FSG: R18 (RGB) 55.54% 86.46% 70.10% 70.70% 45.57% 75.68% 54.00% 58.42% 64.6%
R18 [12,31](DPT) 58.20% 78.93% 56.51% 64.55% 44.19% 68.12% 42.72% 51.68% 58.1%
FSG: R18 (DPT) 54.75% 85.84% 63.30% 67.96% 45.0% 73.58% 49.00% 55.86% 61.9%
R18 (LOC) 54.12% 85.59% 62.56% 67.42% 44.76% 74.99% 48.93% 56.23% 61.8%
FSG: R18 (LOC) 55.70% 86.24% 64.80% 68.91% 45.42% 74.99% 50.11% 56.84% 62.9%
MultiStream-R18 [9][RGB+DPT] 54.40% 85.90% 67.09% 69.13% 44.36% 73.81% 51.34% 56.50% 62.8%
FSG: MultiStream-R18 [RGB+DPT] 53.63% 85.55% 65.49% 68.22% 45.81% 74.36% 52.01% 57.39% 62.8%
MultiStream-R18 [9][LOC+DPT] 55.92% 86.16% 63.36% 68.48% 47.00% 75.68% 50.25% 57.64% 63.1%
*FSG: MultiStream-R18 [LOC+DPT] 59.96% 87.84% 69.23% 72.34% 48.84% 77.11% 53.56% 59.84% 66.1%*
ViT-Tiny [11,30](RGB) 54.63% 86.04% 68.35% 69.67% 42.78% 72.80% 50.82% 55.47% 62.5%
*FSG: ViT-Tiny (RGB) 55.86% 86.56% 69.33% 70.58% 48.93% 76.47% 55.62% 60.34% 65.5%*

Table 3. Performance Summary: Binary [7] (Polyps < 10mm vs. >= 10mm) vs
Triclass Classification (Diminutive: <= 5mm, Small: 5-10mm, Large: >= 10mm)

Exp. 3: Comprehensive Model Performance Analysis

In our analysis, models enhanced with FSGs were evaluated for generalizability
across binary and triclass classifications, as detailed in Table 3. In this exper-
iment, we consolidated all inferences across different folds for each model to
provide a comprehensive overview of their performance.

In binary classification tasks, the FSG MultiStream-R18 (LOC+DPT)
model achieved a Balanced Accuracy (BA) of 59.96%, an F1 Score of 87.84%,
and a Sensitivity-Specificity of 69.23%, with an overall average performance of
72.34%. This model showcases the efficacy of FSG in improving precision and
predictive accuracy, setting a high benchmark in the binary classification domain.

In the context of triclass classification, the task’s complexity signif-
icantly escalates. Nonetheless, the FSG-enhanced ViT-T (RGB) model show-
cases notable performance, achieving a Balanced Accuracy (BA) of 48.93%, an
F1 Score of 76.47%, and a Sensitivity-Specificity of 55.62%, culminating in an
average of 60.34%. These metrics not only underscore the model’s robustness
but also its adaptability to more complex classification scenarios, despite hav-
ing only 5M parameters. This is considerably less — four times fewer than the
multistream networks and half that of the R18.

The performance of the FSG-enhanced models, particularly MultiStream-
R18 (LOC+DPT) in binary classification and ViT-T (RGB) in triclass classi-
fication, underscores the efficacy of FSG in model optimization across differ-
ent classification tasks. Comparing 12 methods, the highest performances were
from FSG MultiStream-R18 (LOC+DPT) at 66.1% and FSG ViT-T
(RGB) at 65.5%. ViT models without LOC maps or DPT are preferred, due
to their lower probability of error propagation from detection and depth esti-
mation frameworks. Moreover, ViT-Tiny has four times fewer parameters and
lower FLOPs (5.6M vs. 22.5M and 4.7G vs. 5.3G) compared to MultiStream-
R18 (LOC+DPT). Therefore, the most promising solution is FSG ViT-Tiny as
shown in this paper; Vision Transformer models improve significantly in both
CIFAR-100 (classification in natural imaging) and polyp size estimation (regres-
sion in medical imaging).
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4 Conclusions

This study advances deep learning for polyp size assessment by innovatively
integrating Feature Selection-Attention Gates (FSG) with Gradient Routing
(GR) across CNN and ViT architectures. For polyp sizing, the FSG-enhanced
MultiStream-R18 (LOC+DPT) model excels in binary classification, achieving
an F1 Score of 87.8% and an average performance of 72.3%. In triclass classifi-
cation, the ViT-T model attains an F1 Score of 76.5% and an average of 60.3%,
highlighting its efficiency and adaptability. Furthermore, the FSG-enhanced ViT
achieves 83.8% accuracy in CIFAR-100, demonstrating its versatility for various
imaging tasks. ViT models without LOC maps or DPT are preferred due to their
lower probability of error propagation in detection and depth estimation frame-
works. Moreover, ViT Tiny, with 5.6M params and 4.7G flops, has the lowest
parameter count. Integrating FSG enhances ViT, achieving top performance in
regression and classification. Advanced Vision Transformers like Swin, DeiT, and
PVT show significant potential for future research. This analysis emphasizes the
pivotal role of FSG-GR in improving polyp size estimation, suggesting beneficial
effects on clinical outcomes. We aim to expand the application of these tech-
niques to a broader range of medical imaging challenges, improving diagnostic
accuracy with minimal computational overhead. To facilitate future research,
the dataset splits and codebase for CNNs, multistream CNNs, ViT, and FSG-
enhanced models is available at github.com/cosmoimd/feature-selection-gates.

Disclosure of Interests. All the authors are affiliated with Cosmo Intelligent Medical
Devices, the developer of the GI Genius medical device.
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