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Abstract. Segmentation models for thyroid ultrasound images are chal-
lenged by domain gaps across multi-center data. Some methods have
been proposed to address this issue by enforcing consistency across multi-
domains or by simulating domain gaps using augmented single-domain.
Among them, single-domain generalization methods offer a more univer-
sal solution, but their heavy reliance on the data augmentation causes
two issues for ultrasound image segmentation. Firstly, the corruption in
data augmentation may affect the distribution of grayscale values with
diagnostic significant, leading to a decline in model’s segmentation abil-
ity. The second is the real domain gap between ultrasound images is dif-
ficult to be simulated, resulting in features still correlate with domain,
which in turn prevents the construction of the domain-independent latent
space. To address these, given that the shape distribution of nodules is
task-relevant but domain-independent, the SHape-prior Affine Network
(SHAN) is proposed. SHAN serves shape prior as a stable latent mapping
space, learning aspect ratio, size, and location of nodules through affine
transformation of prior. Thus, our method enhances the segmentation
capability and cross-domain generalization of model without any data
augmentation methods. Additionally, SHAN is designed to be a plug-and-
play method that can improve the performance of segmentation models
with an encoder-decoder structure. Our experiments are performed on
the public dataset TN3K and a private dataset TUI with 6 domains.
By combining SHAN with several segmentation methods and comparing
them with other single-domain generalization methods, it can be proved
that SHAN performs optimally on both source and target domain data.

Keywords: Thyroid ultrasound - Shape prior - Segmentation - Gener-
alization.
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1 Introduction

The traditional mode of ultrasound diagnosis has been changed following the
maturation of Deep Learning technology. More and more Computer Aided Di-
agnostic(CAD) systems [17] are involved in the ultrasonic diagnosis. Ultrasound
image segmentation models suffer from domain shifts and have limited gener-
alization across domains, as shown in Fig. 1(a). Domain Generalization(DG) is
a method that improves the performance of the model on unseen domain (also
called target domain). DG segmentation methods can be divided into Multi-DG
(MDG, as shown in Fig. 1(b)-(d)) and Single-DG (SDG, as shown in Fig. 1(e)).
MDG methods improve the generalization ability of the model by alignment,
meta-learning, normalization, and disentanglement [20]. In contrast, SDG is a
more general solution, since most of the SDG methods are able to cover the multi-
domain situations. SDG usually treat images generated by data augmentation
or style transfer methods as new domains to simulate the domain gap, and then
models are trained based on MDG. Data augmentation methods for SDG include
gamma correction and noise addition in BigAug [19], Bezier curve transformation
in SLAug [16], photometric and geometric transforms in PDEN [10], frequency
mixing in FreeSDG [9], global intensity non-linear augmentation in [14], etc.
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Fig. 1. The domain gap and some domain generalization segmentation methods for
thyroid ultrasound images. Pky in blue denotes source data, Py in green denotes the
unseen data. (a) shows the effect of domain gap on the model for nodule segmentation.
(b)-(e) show some kinds of DG methods. (f) shows the idea of our method.

Most of the current segmentation methods for SDG rely on data augmen-
tation methods, which have achieved impressive results in various scenarios.
However, they still face two challenges in cross-domain segmentation tasks for
ultrasound images. One is that existing methods overlook whether data aug-
mentation affects the segmentation capability of the model, i.e., the corruption
of grayscale values with diagnostic significance leads to a decline in the model’s
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performance in source domain. Second, the effectiveness of SDG is directly in-
fluenced by the data augmentation methods’ ability to simulate the differences
between real domains. Since the discrepancies between ultrasound images from
different domains are mainly in resolution, probe scanning orientation, parame-
ter settings and speckle noise, it is difficult to bridge the domain gap by simple
data augmentation or style transfer methods. What we want to address is how
to establish a stable domain-independent feature space without relying on data
augmentation, so as to enhance the cross-domain generalization ability of the
thyroid ultrasound image segmentation models while maintaining or even im-
proving the segmentation performance on the source domain.

Considering the fact that lesions in thyroid ultrasound images are approxi-
mately elliptic-shaped, we desire that the segmentation model could learn the
shape distribution of the lesion which is a task-relevant but domain-independent
feature. Liu et al. [11] have shown the cross-domain stability of lesion shape.
But it was designed for images with high consistency of anatomy, which is not
applicable to ultrasound images which have variable sections and flexible angles.

Therefore, in this paper, a plug-and-play method SHape-prior Affine Network
(SHAN) is proposed for the cross-domain segmentation task of ultrasound im-
ages. The SHAN consists of 1) Nodule Shape Prior, a segmentation task-relevant
but domain-independent prior knowledge to constrain a stable domain-invariant
feature space in the segmentation model. 2) Global Affine Module, which builds a
stable affine mapping relationship between nodule shape distribution and latent
feature by learning the aspect ratio, size, and location of benign and malig-
nant nodules in the global view, estimates the shape of nodules preliminarily. 3)
Neighbor Affine Module refines the preliminary shape estimation based on the
subtle grayscale variation of neighboring pixels in the local view, and completes
the segmentation of the nodule. The segmentation capability and cross-domain
generalization ability of SHAN has been proved by performing a number of ex-
periments on the public thyroid ultrasound image dataset TN3K [5] and the
private dataset which contains 6 domains.

2 Method

To describe the details of SHAN, as shown in Fig. 2, some symbolic definitions are
given firstly. The input is denoted as X € R#XW>3 The ¥ and Y € REXWxC
represent the prediction and the Ground Truth(GT), where C is the number
of classes. The encoder and decoder are denoted as fe(-) and fq(-). The fseq(+)
denotes the projection head of segmentation. The loss function of SHAN consists
of the two cross-entropy losses between the elliptical prediction E from encoder,
the prediction from decoder and the GT respectively, that is L, = L(E,Y) +
£(Y, Y'). Since SHAN is proposed as a plug-and-play method, we did not design
complex loss function and the way it is integrated with the loss of baseline.
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Fig. 2. An overview of the proposed SHAN during training in which the target domain
in the dashed box on the left is kept unseen. The same shape prior is given for data
from different domains. Details can be found in the main text.

2.1 Nodule Shape Prior

The SHAN attempts to find stable domain-invariant representation of thyroid
nodules. Consider that a nodule is generally an approximate ellipse, which is
domain-independent but task-relevant. More specifically, in Thyroid Imaging
Reporting and Data System(TI-RADS) [18], the Axial/Transverse (A/T) of the
nodule is an important diagnostic factor. Thus, SHAN initializes the shape prior
S € RE*W with the critical state A/T = 1. S is a fixed binary matrix in which
pixels within a radius r from the center are filled with 1 and others are set to
0. The encoder builds the stable mapping between the latent features and the
distributions of A/T from benign and malignant nodules based on this Nodule
Shape Prior S.

2.2 Global Affine Module

The purpose of Global Affine Module (GAM) is to initialize the elliptic shape of
nodules based on the Nodule Shape Prior by predicting the affine transformation
matrix of each image under a global field, which constructs a mapping relation-
ship between the latent features and the stable shape distribution of nodules.
The features F,, and F), of the lesion in the sagittal (vertical) and coronal (hor-
izontal) planes in the ultrasound images are obtained by the GAM through the
horizontal and vertical pooling of the latent features U = f.(X) € RHE XW'xC’
The global affine transformation matrix is denoted as Ay € R2%3_ where c repre-
sents benign or malignant. Each Af contains a total of 5 learnable parameters,
including the zoom factor zj controlling the x-axis direction, the zoom factor z;
controlling the y-axis direction, the offset factor vy and vy, and the rotation angle
6°. These 5 x (C'—1) parameters can be obtained from fc(F} ), and fe(-) is the
fully connected layer. Inspired by [8], elliptic-shaped prediction E based on the
Nodule Shape Prior is obtained by Grid Sample G and Affine Transformation
Y1, that is E = G(S,91(A4y, P)). P = {(z;,y;)|t = [1,..., H x W]} denotes the
target coordinates of regular grid in E. The definition of v, is as follows,
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where (z7,y?) are the coordinates of sample points in the Nodule Shape Prior S.
In our method, the bilinear sampling is used as Grid Sample G, this is because
the affine transformation changes the density of the grid which is defined as
shown in Eq.2.

H W
B =33 Sy max(0,1 - a5 — hl) max(0,1 — [ — w]) (2)
h=1w=1
The E, as the preliminary prediction of the nodule, provides the encoder
with information about the position, A/T, growth direction of the nodules, and
also provides hints for the segmentation task performed by the decoder.

2.3 Neighbor Affine Module

Unlike the GAM, which focuses on the global information of the nodule, the
Neighbor Affine Module (NAM) establishes a mapping relationship between the
initial elliptic prediction and the fine segmentation result in the local field. This
allows the shape prior to further fit the edges of the nodule, improving the
model’s ability to extract adjacent local detail features. The neighbor transform
matrix A, = f,(D(E)),U) defines the offset of the elliptic prediction pixel-by-
pixel, where f,(-) is the Neighbor Decoder, D(-) is down-sampling, and A, €
RE-DXHXW "The neighbor affine transformation is still performed by bilinear
sampling G, i.e. E' = G(E,2(A, + P)), where 15 is a refined deformation
function that gives each grid point a non-uniform affine transformation direction.
The final segmentation prediction ¥ = fseg(E', fa(U)).

3 Experiments

3.1 Datasets and Settings

Two thyroid ultrasound image datasets are used in the experiment. TN3K[5], a
public dataset, includes 3493 images with pixel-labeled nodules. And a private
Thyroid Ultrasound Image (TUI) dataset is collected from Tianjin Medical Uni-
versity Cancer Hospital, which includes 16780 images with pixel-labeled benign
and malignant nodules. Each image in TUI contains exactly one nodule and has
been approved by the Medical Ethics Committee of Tianjin Medical University
Cancer Hospital. Written consent had been obtained from each patient after full
explanation of the purpose and nature of all procedures used. Depending on the
different ultrasound machine, the TUI can be divided into 6 domains, as shown
in Fig. 3. The P1 of TUI is treated as source domain to train the models.

For TN3K and TUI, we all take the five-fold cross-validation. All the in-
put images are resized to 224 x 224. Our experiments are performed on one
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Fig. 3. TUI dataset. (a)-(c) show the complexity, uniformity of gray scale, contrast
and texture from different domains in TUI by different properties of Gray-Level Co-
occurrence Matrix, respectively. (d)-(e) show the number and image of each domain.

NVIDIA A100 GPU. AdamW optimizer [12] is used with learning rate 10~ for
200 epoches. Batch size is 24. The r of the shape prior is 20. In the following
text, the "ours" refers to the SHAN utilizing Unet[15] as baseline.

3.2 Experiment on source domain

To show the effectiveness of our method on source domain for supervised seg-
mentation task, we performed experiments on P1 of TUI and TN3K.

Table 1. The comparison of the segmentation results on source domain(P1).

Method ‘ 10U (%) Dice(%)
Benign Malignant mean Benign Malignant mean

TransDL[1] [62.29+0.99 70.70+0.30 66.50+0.47 76.76+0.75 82.83+0.27 79.80+0.36
TransDL* 76.73+0.20 79.10+0.15 77.91+0.03 86.83+0.06 88.33+0.03 87.58+0.02
SegNet|[2] 70.23+3.74 T74.45+1.64 72.34+2.43 82.45+2.62 85.35+1.07 83.90+1.67
SegNet* 77.38+1.67 79.74+0.26 78.56+0.39 87.24+0.66 88.73+0.16 87.98+0.25
TransUNet[3]70.73+2.01 74.59+1.67 72.66+1.81 82.86+1.05 85.45+1.88 84.15+1.69
TransUNet* |75.61+1.94 78.05+0.86 77.48+0.66 86.02+0.49 88.37+0.64 87.29+0.44
UNet++[21] |79.79+0.31 80.44+0.26 80.12+0.28 88.76+0.19 89.16+0.16 88.96+0.17
UNet++*  |80.46+0.42 81.10+0.51 80.78+0.46 89.77+0.26 89.56+0.30 89.37+0.28
AttUNet[13] [79.11+0.48 81.59+0.30 80.35+0.20 88.34+0.22 89.86+0.17 89.10+0.14
AttUNet* 80.88+0.290 81.50+0.23 81.19+0.18 89.43+0.09 89.81+0.13 89.62+0.10
baseline 78.35+1.06 80.38+0.48 79.36+0.46 87.86+0.67 89.12+0.30 88.49+0.29
SHAN (ours) |81.18+0.20 81.95+0.13 81.57+0.06 89.61+0.12 90.08+0.08 89.85:+0.03

* stands for plug-and-play SHAN in that method.



SHAN for Cross-Domain Nodule Segmentation 7

TUI(P1). The 3-class segmentation performance of our method in TUT is
shown in Tab. 1. It can be seen that the SHAN improves the segmentation of
both benign and malignant nodules in the source domain. The reason is that the
affine transformation matrix of the shape prior builds a relationship between the
features and the A/T of different nodules, which is an effective representation.
The differences between the true nodule shape and the predicted elliptic shape
are emphatically learned by the neighbor affine transformation of SHAN.

TN3K. As the GT in TN3K only contains nodule and background, we give
more metrics in Tab. 2 to show the performance of different methods for 2-class
segmentation. The TRFE and TRFE+ are multi-task models trained on TN3K
and combined thyroid-labeled images from TG3K[6]. We incorporated SHAN
into the current reported best model TRFE+!. The improvement our method
brings to the original model is clearly observable.

Table 2. The segmentation results on TN3K.

Method Accuracy(%) IOU(%) Dice(%) HD95

Unet[15] 96.46 £ 0.11 65.99 £ 0.66 79.51 £1.31 18.44 +0.75
TRFE|[5] 96.71 £ 0.07 68.33 £ 0.68 81.91 £1.35 17.96 +1.24
SegNet[2] 96.72 £0.12 66.54 £ 0.85 79.91 £1.69 17.13 £ 0.89
DeepLabv3-+[4] 97.19 £0.05 70.60 £ 0.49 82.77£0.98 13.92 + 0.89
TRFE-+[6] 97.04 £0.10 71.38 £0.43 83.30 £0.26 13.23 £ 0.63
TRFE+ w. SHAN|[96.73 £+ 0.06 73.59 £ 0.16 84.61 £ 0.04 4.05 +£0.27

3.3 Experiment on target domain

To prove the generalization ability of our method, we treat P1 as the source
domain and test model on the data from the other domains. The prediction
results of the GAM and NAM on the target domain are shown in Fig.4. From
the preliminary prediction E of the nodule, it can be seen that the SHAN could
learn the stable nodule shape features in terms of location, size, and A/T.

The generalization abilities of different segmentation methods and their im-
provement with SHAN, the current SDG methods, and our method are shown in
Tab. 3, respectively. The "Intra-domain" means training and testing the model
on the specific target domain. We do not perform intra-domain training for P3
and T1 as the number of data in these domains is too small. First, the 3-12
rows in Tab. 3 show that our method improves the generalization ability of cur-
rent segmentation models with encoding-decoding structure. The SHAN has a
noticeable improvement on TransDL, up to 21.71% improvement in mIOU on
P2. Second, comparison with other SDG methods shows that our method still
reaches the optimum, as shown in 13-16 rows. This is because the data augmen-
tation methods used by current SDG methods cannot fit the domain gap between

! https://github.com /haifangong / TRFE-Net-for-thyroid-nodule-segmentation



Fig. 4. Some examples of the input images, elliptic-shaped prediction, final prediction
and ground truth. Left: Benign nodule images. Right: Malignant nodule images.

ultrasound images from multi-center. In contrast, our SHAN does not rely on
data augmentation, but rather improves the generalization ability of the model
by learning the nodule shape representation to obtain a domain-invariant latent
features. More segmentation results can be seen in the supplementary material.

Table 3. The mIOU(%) comparison of the SHAN, segmentation methods and SDG
methods on target domains.

Method P2 P3 M3 T1 T2
Intra-domain |70.67 — 64.72 — 72.93
TransDL 45.66+1.41 56.50+2.19 63.38+0.74 59.04+0.78 45.75+1.73
TransDL* 67.37+0.39 62.04+0.98 66.89+0.08 69.25+029 53.97+1.23

TransUNet 56.20+1.75 57.43+3.18 63.92+2.66 63.41+1.14 51.47+1.92
TransUNet* 66.93+t1.20 63.18+1.95 66.47+0.93 68.99+t0.32 54.02+0.87

SegNet 60.87+2.85 62.05+1.86 65.54+1.68 64.51+0.69 53.97+1.21
SegNet* 71.44+0.36 70.40+1.92 69.26+0.74 70.10+0.16 59.25+0.18
UNet++ 72.99+0.65 68.56+0.21 68.59+2.04 73.01+2.52 61.33+0.07
UNet+-+* 74.16+0.72  70.25+040 69.74+163 74.11+t1.67 62.08+0.12
AttUNet 73.01+0.72 66.66+0.35 65.22+1.56 73.29+0.96 60.71+1.00
AttUNet* 75.80+0.33 70.10+0.91 66.23+1.24 75.98+053 62.15+0.07

FreeSDGI [9] |54.86+0.56  55.12+1.80  61.55+1.37  57.24+0.71  48.26+1.06
SLAug? [16] 53.59+0.29 55.53+1.94 64.17+1.15 56.36+0.55 53.80+0.89
C?SDG1 [7] 55.06+0.41  56.71+2.23  67.08+0.57  62.11+0.59  54.44+0.28
GIN{ [14] 71.40+0.16  68.15+1.70  66.16+0.40  72.75+0.93  60.38+0.93
SHAN(ours) |75.19+0.31 72.05+0.20 70.91+0.35 75.13+0.42 64.98+0.97

* stands for plug-and-play SHAN in that method. istands for it’s a SDG method.

4 Discussion

In this paper, the SHAN is proposed for the cross-domain segmentation of thy-
roid ultrasound images, which learns the shape prior distributions of thyroid
nodules by learnable affine matrix, to improve the performance of the model
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in source and target domains. The workflow of the SHAN is similar to that of
human segmenting an object, which refines the segmentation result based on
the coarse-grained preset. We prove the effectiveness of the SHAN by exten-
sive experiments on TN3K and a private dataset with 6 domains.Exploring the
scalability of this method on other diseases is our future work.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.
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