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Abstract. Neuroimage modalities acquired by longitudinal studies of-
ten provide complementary information regarding disease progression.
For example, amyloid PET visualizes the build-up of amyloid plaques
that appear in earlier stages of Alzheimer’s disease (AD), while struc-
tural MRIs depict brain atrophy appearing in the later stages of the
disease. To accurately model multi-modal longitudinal data, we pro-
pose an interpretable self-supervised model called Self-Organized Multi-
Modal Longitudinal Maps (SOM2LM). SOM2LM encodes each modal-
ity as a 2D self-organizing map (SOM) so that one dimension of each
modality-specific SOMs corresponds to disease abnormality. The model
also regularizes across modalities to depict their temporal order of cap-
turing abnormality. When applied to longitudinal T1w MRIs and amy-
loid PET of the Alzheimer’s Disease Neuroimaging Initiative (ADNI,
N=741), SOM2LM generates interpretable latent spaces that charac-
terize disease abnormality. When compared to state-of-art models, it
achieves higher accuracy for the downstream tasks of cross-modality
prediction of amyloid status from T1w-MRI and joint-modality predic-
tion of individuals with mild cognitive impairment converting to AD
using both MRI and amyloid PET. The code is available at https:

//github.com/ouyangjiahong/longitudinal-som-multi-modality.

1 Introduction

Multi-modal neuroimaging can play a crucial role in diagnosing diseases, such as
structural MRI and amyloid PET for Alzheimer’s disease (AD) [5]. Specifically,
amyloid PET scans visualize the build-up of amyloid plaques that appear in ear-
lier stages of the disease, while structural MRIs depict brain atrophy appearing
at later stages of AD[5]. As a result, the longitudinal multi-modal monitoring of
at-risk and diseased individuals allows for a more comprehensive understanding
of the progression of AD [5].

However, accurately modeling multi-modal, longitudinal neuroimages remains
under-explored as most analyses simply combine measurements extracted from
di↵erent modalities into a single vector [2,9,14]. This simple fusion strategy
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ignores cross-modal relationships (e.g., correspondence of disease abnormality
measured across modalities), which are essential to modeling disease progres-
sion. To capture these cross-modal relationships, deep learning models often
map scans into modality-specific latent spaces and then align these latent spaces
[1,15,8]. While these approaches are generally confined to cross-sectional settings,
the Longitudinal Correlation Analysis (LCA) [17] jointly disentangles one linear
direction in each modality-specific latent space such that intra-subject changes
along those directions are maximally correlated between modalities. However,
the directions must be linear, which limits the accuracy of LCA. Furthermore,
the model does not explicitly learn the time shift between modalities, i.e., the
order among modalities of displaying disease abnormality. Here, we propose to
incorporate temporal dependencies in multi-modal encoding by first learning
clusters stratified by disease abnormality in each modality-specific latent space
and then aligning clusters across modalities so that the time shift is properly
encoded.

Specifically, we choose to generate modality-specific clusters based on the idea
of Longitudinal Self-Organized Representation (LSOR) [10], which relies on self-
supervision to organize the clusters into a 2D self-organizing map (SOM). To ease
interpretation, the SOM is organized as a 2D grid so that each node is associated
with a cluster and its corresponding SOM representation. Each scan can now
be encoded by a SOM similarity map, which records the scan’s distance to each
SOM representation in the latent space. unlike LSOR [10], we derive modality-
specific SOMs that can further account for cross-modality relationships. We do
so by encouraging one direction of the modality-specific SOMs to correspond to
disease abnormality so that the temporal dependencies of disease abnormality
are captured across modalities. For example, the abnormality is depicted first in
the amyloid PET-specific SOM and later in the structural MRI-specific one [5].
Named Self-Organized Multi-Modal Longitudinal Maps (SOM2LM), we apply
our method to the longitudinal T1-weighted MRIs and amyloid PETs of 741
ADNI participants. We show that the resulting 4-by-8 modality-specific SOM
grids are stratified by markers related to disease abnormality, such as percentage
of dementia cases, cognitive measure, and amyloid status. Then, we demonstrate
that the modality-specific similarity maps visually represent disease abnormality
by measuring the similarity between the latent representation of a scan and
SOM representations associated with di↵erent disease stages. Furthermore, we
illustrate that trajectories of estimated disease abnormalities (computed from
SOM similarity maps) align with clinical findings of AD progression. Lastly, we
evaluate our representations for cross- and joint-modality predictions. The cross-
modality task uses the structural MRI to predict amyloid status measured from
amyloid PET while the joint-modality task uses both modalities to predict which
individuals su↵ering fromMCI will converter to AD. On these tasks, the accuracy
of predictors based on SOM2LM is higher than those based on other state-of-
the-art self-supervised representations of multi-modal longitudinal neuroimages.
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Fig. 1: Overview of SOM2LM. Left: Latent spaces of two modalities with SOM
representations G(m) (blue stars) and G(p) (red stars) organized in 2D grids. La-
tent representations of a multi-modal longitudinal pair (xu

(m), x
u
(p), x

v
(m), x

v
(p)) are

shown in red and blue arrows; Middle: SOM similarity maps of each represen-
tation with bright color suggesting high similarity; Right: Longitudinal regular-
ization applied on the estimated disease abnormality (�u

(�),�
v
(�)) (red and blue

arrows) and multi-modal regularization applied on (�⇥
(m),�

⇥
(p)) (purple arrows).

2 Constructing Self-Organized, Multi-Modal,

Longitudinal Maps

For an individual, let xu
(�) be the brain measurements extracted from modality

� of assessment u and U(�) = {xu
(�)} be the set of assessments (of a modal-

ity) in the training set. As in [11,18,10], a modality-specific encoder F(�) maps
input x

u
(�) to the latent space, i.e., zu(�) := F(�)(x

u
(�)), and a modality-specific

decoder H(�) reconstructs the input x
u
(�) from the latent representation z

u
(�), i.e.,

x̃
u
(�) := H(�)(z

u
(�)). In the remainder of this section, we first describe how to

generate a modality-specific SOM and corresponding SOM similarity map. We
then introduce a longitudinal regularization on those SOM similarity maps to
encourage one direction of a modality-specific SOM to correspond to disease ab-
normality. In addition, we regularize across the modality-specific SOM similarity
maps to preserve their temporal ordering of recording abnormality as defined by
the clinical literature. All the resulting loss functions are then combined into a
final objective function.

Creating Modality-Specific SOMs. We create a SOM for each modality de-
riving from [10]. Specifically, for each modality �, SOM representations (i.e.,
cluster centroids) are organized in a Nr by Nc grid (denoted as SOM grid)
G(�) = {g(�),i,j}Nr,Nc

i=1,j=1, where g(�),i,j denotes the SOM representation corre-
sponds to the node on the i-th row and j-th column in this grid. This easy-to-
visualize grid preserves the high-dimensional relationships between the clusters.
As in Fig. 1 (left), gray lines connect neighboring SOM representations in the
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grid. In order to create the modality-specific SOMs, the objective of the models
consists of three components.
Reconstruction Loss: given the latent representation z

u
(�), its closest SOM repre-

sentation is denoted as g(�),✏u
(�)

, where ✏u(�) := argmin(i,j) k z
u
(�) � g(�),i,j k2 is its

2D grid index in G(�) and k · k2 is the Euclidean norm. The reconstruction loss
encourages both the latent representation and its closet SOM representation to
be descriptive of the input, i.e.,

Lrecon,(�) := Exu
(�)⇠U(�)

⇣
k x

u
(�) � x̃

u
(�) k22

⌘
,

where x̃
u
(�),g = H(�)(g(�),✏u

(�)
) and E(·) is the expected value.

Commitment Loss: the function explicitly promotes the closeness between the
latent representation and its closet SOM representation, i.e.,

Lcommit,(�) := Exu
(�)⇠U(�)

⇣
k z

u
(�) � g(�),✏u

(�)
k22
⌘
.

Proximity Loss: the models updates all SOM representations g(�),i,j by incorpo-
rating a soft weighting scheme. Specifically, a weight w

u
(�),i,j defines how much

g(�),i,j should be updated with respect to z
u
(�) based on its proximity to the grid

location ✏
u
(�), i.e.,

Lprox,(�) := Exu
(�)⇠U(�)

0

@
X

g(�),i,j⇠G(�)

⇣
w

u
(�),i,j · k sg[zu(�)]� g(�),i,j k22

⌘
1

A .

where w
u
(�),i,j := �

✓
e
�

k✏u
(�)�(i,j)k21

2⌧

◆
. �(w) := wP

i,j wi,j
ensures that the scale of

weights is constant during training. ⌧ is a scaling factor so that the weights
gradually concentrate on SOM representations closer to ✏

u
(�) as training pro-

ceeds. Specifically, ⌧(t) := Nr · Nc · ⌧max

⇣
⌧min
⌧max

⌘t/T
with ⌧min and ⌧max being

the minimum and maximum standard deviation in the Gaussian kernel. t and T

represent the current and the maximum iteration. sg[·] is a stop-gradient opera-
tor [16], preventing the undesirable scenario where zu(�) is pulled towards a naive

solution [10].
SOM Similarity Map: once constructed, the interpretation of the SOM partly
relies on computing the 2D SOM similarity map ⇢

u
(�) for the latent representa-

tion z
u
(�) of each assessment. Specifically, we compute the similarity (i.e., close-

ness) between z
u
(�) and the SOM representations G(�), i.e., ⇢

u
(�) := softmax(� k

z
u
(�)�G(�) k22 /�) with � := std(k z

u
(�)�G(�) k22), where std denotes the standard

deviation of the distance between the latent representation to all SOM rep-
resentations. As visualized in Fig. 1 (middle), brighter colors represent higher
similarity to the SOM representation than duller ones.

Stratifying Modality-Specific SOMs by Disease Abnormality via Lon-

gitudinal Regularization.Di↵erent from [10], we derive an abnormality-stratified
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SOM grid with increasing disease abnormality along one direction (e.g., towards
the right) of the grid. It is regularized by enforcing the latter assessment to
have “high similarity” (bright color in Fig. 1 (middle)) along this direction in
the SOM similarity map compared to the prior one. Specifically, for a similarity
map ⇢

u
(�), we estimate disease abnormality �

u
(�). To do so, we first compute the

sum of the similarity in each column of the SOM similarity map ⇢
u
(�) because �

u
(�)

is invariant to the distribution of similarity within a column. Then we define the
estimated disease abnormality �

u
(�) as the weighted sum of each column’s simi-

larity: �u
(�) :=

PNc

j=1

⇣
j ·

PNr

i=1 ⇢
u
(�),i,j

⌘
. Now let be u and v be two assessments

in a longitudinal scan (with u acquired before v), we then further enforce v to
have more severe abnormality comparing to u by regularizing a hinge loss to
encourage �

v
(�) to be larger than �

u
(�), i.e.,

Llong,(�) := E(xu
(�),x

v
(�))⇠S(�)

⇣
max(0,�u

(�) � �
v
(�) + ↵(�))

⌘

where S(�) = {(xu
(�), x

v
(�))} is the set of modality-specific pairs of intra-subject

assessments from all training samples. ↵(�) is the threshold for the minimal in-
creasing abnormality in the longitudinal regularization.

Enforcing Correspondence Across Modality-specific SOMs via Multi-

modal Regularization. We propose to embed prior knowledge about disease
progression into the model design. With respect to AD, amyloid PET reveals
abnormality years before any are shown in structural MRI. We achieve this by
incorporating a multi-modal regularization on modality-specific SOM similarity
maps. Specifically, at a given assessment ⇥, amyloid PET should display a larger
magnitude of abnormality than T1 MRI (red and blue dots in Fig. 1 (right)). Let
� = m denote T1w-MRI and � = p stands for amyloid PET, then this relation
is regularized by another hinge loss on the estimated disease abnormality �

⇥
(m)

and �
⇥
(p), i.e.,

Lmulti := E(xu
(m)

,xu
(p)

,xv
(m)

,xv
(p)

)⇠S(m,p)

X

⇥2{u,v}

⇣
max(0,�⇥

(m) � �
⇥
(p) + ↵(m,p))

⌘

Here, we define S(m,p) as the set of all longitudinal pairs of the same subject with
both MRI and PET at each assessment. ↵(m,p) is the threshold for the minimal
increasing abnormality between two modalities.

Objective Function. The complete objective function is the weighted combina-
tion of the prior losses with weighing parameters �commit,(�), �prox,(�), �long,(�),
and �multi:

L := �multi · Lmulti +
X

�2{m,p}

Lrecon,(�) + �commit,(�) · Lcommit,(�)

+ �prox,(�) · Lprox,(�) + �long,(�) · Llong,(�) (1)
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Fig. 2: The average SOM similarity maps ⇢ over all subjects with respect to
diagnosis, ADAS-Cog scores, and amyloid summary SUVR. More severe groups
and PET (compared to MRI) have higher similarity towards the right.

The objective function encourages an interpretable SOM grid for each modality
with the horizontal direction being linked to disease progression and the temporal
order of disease process across multi-modal SOM similarity maps.

3 Experiments

3.1 Experimental Setting

Dataset. We evaluate the proposed method on all subjects of ADNI-1, 2, 3,
GO [12] that have at least two visits, and those assessments are at least half a
year apart from each other. For T1-weighted MRI, this selection criteria resulted
in 1194 subjects and a total of 5802 T1w MRIs. Each MRI was reduced to the
z-score of 313 ROI measurements[3]. Specific to amyloid PET, our analysis is
based on the 1977 PET from 676 subjects. 160 ROI features [7] were used as
input x(p) with each representing the Standardized Uptake Value Ratio (SUVR)
to the composite regions [7]. For multi-modal longitudinal data, we included all
953 visits from the 406 subjects with both modalities across multiple assess-
ments. In downstream tasks, we also include those subjects that only have one
assessment with both modalities so that the dataset increases to 1272 assess-
ments from 741 subjects. 591 of those visits are labeled amyloid positive, i.e.,
they have a summary SUVR equal to or larger than 0.78 [7]. The age di↵erence
between amyloid positive (age: 74.7 ± 7.2) and negative (age: 72.4 ± 7.3) is
significant (p < 0.05, two-sample t-test). Among those 741 subjects, 377 stayed
Mild Cognitive Impaired (MCI) for 5 years (age: 72.6 ± 7.6) and 50 converted
to dementia (age: 74.1 ± 7.4). The two groups had no significant age di↵erence
(p = 0.12, two-sample t-test).
Implementation Details. The encoders and decoders are both multilayer per-
ceptrons (MLP) (details in Table. S1) with the dimension of latent representa-
tions being 64. SOM representations were randomly initialized. Next, a network
specific to each modality was first trained based on S(m) and S(p) and then the
networks were trained together via Lmulti using S(m,p). To accommodate the
di↵erence in the range of values of measurements extracted from MRI and PET,
di↵erent weighing parameters � were used to balance loss components in Eq. 1
as in [10]. Details are summarized in Table S2 and Table S3.
Evaluation. We performed the five-fold cross-validation (folds split based on
subjects) using 10% of the training subjects for validation. Note that the same
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Fig. 3: Trajectories of estimated disease abnormalities (left: MRI �(m), right:
amyloid PET �(p)). Green dots represent cognitive normal subjects, blue are
those that have MCI, and red are diagnosed with dementia. The conversion
times (from MCI to Dementia) are highlighted by orange lines.

fold split was used for pre-training and downstream tasks. We illustrated the
interpretability and capability in disease modeling of our method by assessing the
correlation of the SOM similarity maps to markers related to disease abnormality
(e.g., diagnosis, the Alzheimer’s Disease Assessment Scale–Cognitive Subscale
(ADAS-Cog), and amyloid summary SUVR). Furthermore, we visualized the
trajectories of estimated disease abnormality. Then, we quantitatively evaluated
the quality of the representations by applying them to two downstream tasks.
The first task focuses on cross-modality prediction, i.e., predicting amyloid status
from T1-weighted MRI. This task is of clinical interest as (if successful) it enables
the evaluation of amyloid status (one standard biomarker in diagnosing AD [6])
by MRI, resolving the problems of acquiring PET scans (e.g., high cost, limited
accessibility, and radiation exposure). The age di↵erence in amyloid positive
and negative cohorts was resolved by regressing out age from the representation
(details in Table S3);

The second focuses on joint-modality prediction, i.e., predict which individ-
uals su↵ering from MCI will convert to AD using both MRI and PET. Detailed
training setup is described in Table S3. We measured the classification accuracy
via Balanced accuracy (BACC) and Area Under Curve (AUC). We compared
the accuracy metrics to models using the same architecture with encoders pre-
trained by other longitudinal self-supervised learning (SSL) methods (LVAE [13],
LSOR [10]), multi-modal SSL (CLIP [4], ContIG [15]), and multi-modal longitu-
dinal SSL (LCA [17]). All methods used the same experimental setup with the
sole di↵erence coming from the self-supervised regularization.
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Type Methods
Amyloid Status MCI converter

Frozen Fine-tuned Frozen Fine-tuned
BACC AUC BACC AUC BACC AUC BACC AUC

N No pretrain - - 0.67 0.73 - - 0.65 0.73

L
LVAE [13] 0.59 0.67 0.69 0.72 0.63 0.70 0.65 0.73
LSOR [10] 0.60 0.66 0.68 0.73 0.62 0.69 0.64 0.73

M
CLIP [4] 0.64 0.71 0.71 0.75 0.59 0.64 0.61 0.68

ContIG [15] 0.63 0.69 0.69 0.74 0.60 0.66 0.62 0.71

ML
LCA [17] 0.64 0.70 0.70 0.77 0.63 0.70 0.62 0.73
SOM2LM 0.66 0.75† 0.74 0.80† 0.67 0.74† 0.67 0.75

Table 1: Supervised downstream tasks. Types are no pre-training(N), and pre-
training on longitudinal (L), multi-modal (M), and multi-modal longitudinal
(ML) data. SOM2LM is more accurate than other state-of-the-art self-supervised
methods († : p < 0.05, Delong’s test).

3.2 Results

Interpretability of SOM similarity maps. The average similarity maps ⇢

shown in Fig. 2 reveal that higher similarity (yellow) gradually shifts towards
the right for more severe groups. This observation is confirmed by the strong
correlation between the SOM grid index with dementia diagnosis (MRI: 0.71,
PET: 0.73), ADAS-Cog (MRI: 0.80, PET: 0.78), and SUVR (MRI: 0.82, PET:
0.91) shown in Fig. S1. Moreover, high similarity (yellow) in the SOM similarity
maps of PET is on the right compared to those from MRIs. Specifically, while
there is hardly any di↵erence between Cognitive Normal (CN) and MCI captured
from MRIs, the SOM similarity maps based on PET clearly distinguish the
di↵erent stages.
Interpretability of estimated disease abnormality. Fig. 3 plots trajecto-
ries of the estimated disease abnormality (left: �(m), right: �(p)) with respect to
chronological age. As expected, most of the cognitively normal cases (green) stay
at the bottom (small estimated abnormality), while dementia cases (red) appear
on the top (large estimated abnormality), suggesting the e↵ectiveness of the esti-
mated disease abnormality. For both modalities, the model automatically learns
the typical “sigmoid” shape associated with AD progression [5]. Compared to
MRI, disease abnormality estimated from amyloid PET has a larger magnitude
and conversion time (MCI to dementia, highlighted by orange lines) in PET are
on the top (saturated regions of sigmoid). It suggests the temporal ordering of
capturing abnormality: accumulation of amyloid plaque in the preclinical stage
(cognitively normal) and gradually converges with progressing to the dementia
stage; fast progressing brain atrophy happens with the worsening of the cognition
[5].
Downstream Tasks. To evaluate the quality of the learned representations, we
evaluate two downstream tasks with both frozen and fine-tuned encoders. For
estimating amyloid status from the corresponding MRI (Table 1), the proposed
method is significantly (p < 0.05, DeLong’s test) more accurate for both frozen
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(BACC: 0.66, AUC: 0.75) and fine-tuned encoder (BACC: 0.74, AUC: 0.80)
than state-of-the-art multi-modal longitudinal self-supervised method such as
LCA [17], which also jointly models the cross-modal relationship. With respect to
predicting MCI conversion, the proposed method is again significantly (p < 0.05,
DeLong’s test) more accurate (BACC: 0.67, AUC: 0.74) with the frozen encoder
and better accuracy compared with all other methods in the fine-tuned setting.
The ablation study in Table S4 demonstrates that regularizing the cross-modal
relationship via Lmulti significantly contributes to the accuracy of both tasks.

4 Conclusion

In this work, we proposed SOM2LM, the first interpretable, multi-modal longi-
tudinal self-supervised method that explicitly embeds domain knowledge about
disease progression (i.e., temporal dependency of modalities showing disease ab-
normalities) in the modal design. Modality-specific SOMs yielded interpretable
latent spaces and SOM similarity maps. By incorporating the longitudinal reg-
ularization, one direction of modality-specific SOM captures the longitudinal
changes, which allows for the estimation of disease abnormality using SOM sim-
ilarity maps. By regularizing a larger magnitude of abnormality in amyloid PET
than in MRI, SOMs incorporated the clinical knowledge about the disease pro-
gression across di↵erent modalities. Note, ROI measurements were used as the
input of the model, which can potentially improved by using images to ob-
tain more informative and generalizable representations. As a result, the inter-
pretability of the representations was confirmed by the correlation between the
SOM grid and disease abnormality measures. When evaluated on downstream
tasks of cross-modality prediction of amyloid status and joint-modality predic-
tion of MCI converters, SOM2LM was more accurate than other state-of-the-art
methods. In conclusion, SOM2LM can generate interpretable latent representa-
tions, encoding disease progression captured by longitudinal multi-modal neu-
roimaging, and yield valuable representations for downstream tasks.
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