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Abstract. We present the first automated multimodal summary gener-
ation system, MMSummary, for medical imaging video, particularly with
a focus on fetal ultrasound analysis. Imitating the examination process
performed by a human sonographer, MMSummary is designed as a three-
stage pipeline, progressing from keyframe detection to keyframe caption-
ing and finally anatomy segmentation and measurement. In the keyframe
detection stage, an innovative automated workflow is proposed to pro-
gressively select a concise set of keyframes, preserving sufficient video in-
formation without redundancy. Subsequently, we adapt a large language
model to generate meaningful captions for fetal ultrasound keyframes
in the keyframe captioning stage. If a keyframe is captioned as fetal
biometry, the segmentation and measurement stage estimates biometric
parameters by segmenting the region of interest according to the textual
prior. The MMSummary system provides comprehensive summaries for
fetal ultrasound examinations and based on reported experiments is es-
timated to reduce scanning time by approximately 31.5%, thereby sug-
gesting the potential to enhance clinical workflow efficiency.
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1 Introduction

Ultrasound (US) examinations are essential for monitoring fetal development and
maternal health throughout pregnancy. Conducting these examinations requires
skill to carefully manipulate the US probe to locate anatomies, interpret images,
and perform biometry [25]. However, learning to scan well is hard and can take
years of training [14]. As a result, there is a worldwide shortage of highly-skilled
qualified sonographers, including in low-and-middle-income countries, point-of-
care environments, and emergency medical situations [24]. Fetal screening is
also time-consuming [26], often taking around 28 minutes per second-trimester
examination, as observed in our dataset (left of Fig. 1). Moreover, the redun-
dancy in US videos complicates retrospective analysis and documentation. These
challenges necessitate an automated summarizing system capable of efficiently
highlighting useful content in examinations and ensuring accurate assessments
regardless of expertise, even when examinations need to be conducted quickly.
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Fig. 1. Multimodal summary for fetal US video to support sonography workflow.

Such an automated summarizing system differs from video summarization in
computer vision [2], posing its unique challenges. First, US videos exhibit frame
redundancy in appearance, and frames of the same anatomy may have different
appearances due to the probe positioning. Hence, it is crucial to detect a subset
of representative keyframes rather than potentially redundant video clips as in
traditional video summarization. Second, this system should not only identify
useful content from the video, but also interpret anatomies and findings within
the identified content, and even measure important parameters (right of Fig. 1).

In this paper, we propose MMSummary, a multimodal summary generation
system for medical imaging video, with a particular focus on fetal US. Mimicking
the examination process, our method comprises a three-stage pipeline, consisting
of keyframe detection, keyframe captioning , and segmentation and measurement .
In the keyframe detection stage, a transformer-based network mines temporal
information within the video to detect representative frames with anatomical
structures of interest. Then a diverse keyframe detection algorithm is designed
to eliminate redundant keyframes, forming a concise subset of keyframes. In the
keyframe captioning stage, following ClipCap [20], we leverage pre-trained
foundation models, namely BiomedCLIP [33] and GPT2 [23], which possess a
broad understanding of biomedical visual and textual data. By only fine-tuning
a lightweight mapping network to bridge the gap between visual and textual
features, the large language model GPT2 is adapted to generate meaningful
and user-friendly captions for detected keyframes. If a keyframe is captioned as
fetal biometry, the segmentation and measurement stage segments a region
of interest for automated biometry. Unlike existing fetal anatomy segmentation
methods [4, 34, 21], we incorporate prior textual information as prompts to guide
anatomy segmentation. By automating the process of US video summarization,
we show in our experiments that MMSummary saves around 31.5% scanning
time, expedites and simplifies the scan documentation process, and can achieve
consistent and accurate assessments independent of operator expertise.

Related Work: (1) Automated medical report/summary generation
has been explored in several medical image analysis applications including for
chest X-ray images [28, 31, 35], breast US images [11, 12, 30], and fetal US im-
ages [1]. Typically, it is framed as a visual captioning task, where medical image
features extracted from convolutional neural networks are input into recurrent
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Fig. 2. Illustration of the three-stage MMSummary pipeline.

neural networks to produce word sequences, forming medical reports, and the
recurrent neural network is usually trained from scratch [1, 30, 35]. The recent
emergence of large language models has led to significant advancement in re-
port generation [12, 28]. These methods are primarily tailored to 2D medical
images and text-based summarization, except [27] which provides multimodal
summarization of clinical conversation. To the best of our knowledge, we are the
first to generate multimodal summaries for medical imaging video. (2) Video
summarization is extensively studied in computer vision, aiming to generate a
concise representation of video content defined as a set of keyframes or clips [2].
Early non-deep learning-based methods focused on selecting keyframes [6, 10].
Recent methods prioritize video clips [8, 15, 16, 29, 32] since the clips incorporate
audio and motion for a more natural narrative and enriched summarization. In
fetal US video, one prior work employed reinforcement learning to extract video
clips [17]. However, frames within clips may be too numerous to include in a
multimodal summary. Moreover, and importantly, in fetal US video, keyframes
often exhibit a similar anatomical appearance to neighboring frames, leading to
frame redundancy. Thus, our approach focuses on extracting keyframes sufficient
to summarize the whole examination with minimal frame redundancy. Addition-
ally, unlike prior video summarization methods, our MMSummary generates text
descriptions for the extracted keyframes.

2 Method

The proposed three-stage MMSummary pipeline is illustrated in Fig. 2. Given an
input video, MMSummary generates a multimodal summarization with keyframes,
text descriptions, and biometry parameters. In keyframe detection (stage 1),
the method takes the video as input V = {x1, ..., xT }, which spans over T time
steps. The keyframe label for the input video is denoted as y = {y1, ..., yT }, where
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yt = 1 indicates a keyframe, and otherwise, it is a non-keyframe. Keyframes
extracted in stage 1 are separately fed into stage 2 for keyframe caption-
ing . Among these keyframes, {xkey1 , ..., xkeyk } are annotated with caption la-

bels {ykey1 , ..., ykeyk }. Additionally, some keyframes {xbio1 , ..., xbiob } can be used
for biometry estimation and are equipped with region-of-interest mask labels
{ybio1 , ..., ybiob }. In segmentation and measurement (stage 3), a unified model
is learned that automatically segments regions of interest, and estimates biomet-
ric parameters, gestational age, and fetal weight.

Keyframe detection. This stage detects a concise subset of representative
and diverse keyframes that are distinct from each other, summarizing the useful
anatomical content in the video. As in Figure 2 (left side), frames of the video are
passed through a pre-trained image feature extractor (fI(·), BiomedCLIP ViT-B
[33]) followed by a learnable linear layer, yielding a sequence of feature embed-
dings. These embeddings are added to vanilla sine-cosine temporal position em-
beddings, and fed into a 4-layer video transformer fV (·) (each containing a multi-
head self-attention and MLP), outputting the probability of each frame being
a keyframe p′ ∈ [0, 1]T . To optimize the learnable linear layer and video trans-
former, binary cross-entropy loss LBCE(p′, y) = −y · log(p′)− (1− y) · log(1−p′)
is computed w.r.t. the keyframe label y.

When minimizing LBCE(p′, y), we encounter extreme class imbalance in our
application with the keyframe label y exhibiting a class ratio over 1600:1. In-
deed, due to fine-grained probe adjustments, image annotation, and biometry
measurements performed by sonographers, keyframe neighbors often share a
similar feature representation. Based on this observation, we propose a keyframe
label propagation algorithm to balance the non-keyframe and keyframe classes in
the label distribution. Specifically, we introduce a frame-frame similarity matrix
computed via the cosine similarity S ∈ [0, 1]T×T between frame features derived
from [5] within the video to propagate keyframe labels. If a frame exhibits a high
similarity score (above 0.99) compared with any keyframes within the video, it
is relabeled as a keyframe, resulting in an updated keyframe label y′. Thus, by
minimizing LBCE(p′, y′), the model is optimized to detect representative frames
that preserve as much essential information across the entire video as possible.

To mitigate redundancy in detected frames, we further propose an diverse
keyframe detection algorithm (supp. Fig. 1), which iteratively selects keyframes
to ensure exclusiveness in the resulting subset. In each iteration, the frame with
the highest probability in the video is selected as the keyframe, and then we
mask out other frames that share similar features with the selected keyframe
(i.e., have a similarity above τ). This process continues iteratively until the
highest probability falls below τ ′. Finally, we obtain a concise set of keyframes.

It is worth noting that choosing good values for τ and τ ′ is crucial (supp. Fig.
2). A too large τ cannot thoroughly filter out similar frames, leading to frame
redundancy. Conversely, a too small τ may result in a risk of information loss as
some representative frames are discarded. As for τ ′, a too small value may lead
to the inclusion of non-informative frames, while choosing a too large value may
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result in information loss due to discarding potentially useful frames. Hence, well
chosen τ and τ ′ values can ensure the selected keyframes effectively capture the
essential information while minimizing redundancy and information loss.

Keyframe captioning. To automatically generate text descriptions for de-
tected keyframes, we use BiomedCLIP (i.e., image feature extractor fI(·)) [33]
and GPT2 [23] (fG(·)), which possess a broad understanding of biomedical vi-
sual and textual data, respectively. Then we introduce a lightweight mapping
network fM (·) to bridge the gap between visual and textual features. It takes two
inputs, visual feature embeddings and a learned constant input. The constant
retrieves meaningful information from visual feature embeddings through multi-
head attention, resulting in m = 50 prefix embeddings, i.e., pemb

1 , ..., pemb
m =

fM (fI(xkey)). Additionally, we use the tokenizer of GPT2 to generate a sequence
of embeddings for text prompt ‘this image shows’, i.e., temb

1 , temb
2 , temb

3 , which,
together with previous prefix embeddings, serve as input prompts for GPT2.

During the training phase, GPT2 model outputs are constrained with the
caption label ykey, i.e., a sequence of tokens ykey,1, ..., ykey,l. Our training objec-
tive is to predict caption tokens conditioned on both visual and textual prompts
in an autoregressive manner. Specifically, we optimize the mapping network using
the cross-entropy loss Lcaption

CE = −
∑l

i=1 logp(y
key,i | pemb

1 , ..., pemb
m , temb

1 , ..., temb
3 ,

ykey,1, ..., ykey,i−1). By optimizing the mapping network to refine prefix embed-
dings, GPT2 is effectively adapted to generate meaningful and user-friendly cap-
tions for detected keyframes. In the inference phase, we extract the visual prefix
embeddings for detected keyframes from the previous stage and obtain text
prompt embeddings as well. Then we start generating a caption conditioned on
these prompts by, iteratively, predicting the next token. At each step, the lan-
guage model outputs probabilities for all vocabulary tokens, and we select the
token with the highest probability as the next token in the caption sequence.

Segmentation and measurement. If a keyframe xkey is recognized as a biom-
etry image xbio, it is fed into the segmentation model to segment the region of
interest for biometric parameter measurement. Given that semantic informa-
tion embedded in text can enhance medical image segmentation [7], we incorpo-
rate prior textual information generated from the keyframe captioning stage as
prompts to guide segmentation of the corresponding anatomy.

Specifically, input image xbio is fed into the image feature extractor (ViT-B)
pre-trained from [18], yielding a feature size of 64×64 with a 256-dimensional
embedding vector fI(xbio). Simultaneously, the corresponding caption is input
to the text prompt encoder fT (·) (pre-trained from CLIP [22]) followed by a
trainable projection head to generate a 256-dimensional text feature embedding.
Then a lightweight mask decoder, comprising two transformer layers and two
convolutional layers, enhances the image embedding with text prompt features.
The resulting embedding is upsampled and processed by a dynamic mask pre-
diction head to derive the final mask foreground probability pbio at each image
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location. The projection heads and mask decoder are optimized by the combi-
nation of binary cross-entropy loss and dice loss w.r.t. the mask label ybio.

Specific to our video analysis application, there are four biometry planes:
head circumference (HC), abdominal circumference (AC), femur length (FL),
and head cerebellum (Cereb). Empirically the head and abdomen exhibit ellipti-
cal shapes, while the cerebellum and femur are measured by lines. Therefore, we
employ ellipse fitting on the segmented head and abdomen masks using a least-
squares-fit algorithm [9]. The perimeter of the fitted ellipse represents HC and
AC respectively. For the head, the minor axis of the fitted ellipse is the biparietal
diameter (BPD) estimate. For the cerebellum and femur, we fit a minimum ex-
ternal rectangle onto the predicted masks. The long side of the rectangle is used
as the cerebellum and femur length estimate, respectively. Lengths measured
in pixels are scaled to millimeters using a caliper visible on the left-hand side
of the US image [4]. This allows for direct comparison with clinically obtained
measurements. Finally, the estimated biometry is converted to gestational age
and estimated fetal weight using clinical equations [13, 19].

3 Experiments

Dataset. The dataset utilized in this study is from [anonymized project], with
approval from [anonymized Ethics Committee]. Clinical fetal US scans were
conducted using a GE Voluson E8 scanner. The videos were captured at 30
Hz and downsampled to 5 Hz. Our study included 178 second-trimester rou-
tine examination videos conducted by 3 newly qualified (less than two years of
experience) and 1 expert (14 years of experience) sonographers. These videos
were randomly split into training (145), validation (11), and test (22) sets. The
ground-truth keyframes containing meaningful anatomical structures were ob-
tained from screenshots captured by sonographers during clinical scanning. This
resulted in 4596, 329, 679 keyframes in the three sets, of which 3481, 254, 531
frames had caption labels describing anatomies. For biometry estimation, we
annotated bounding boxes to identify regions of interest and used MedSAM [18]
for mask label inference. Due to the poor quality of generated mask labels for
the cerebellum and femur classes, manual reannotation was performed, resulting
in 574, 43, 75 mask labels. Ground-truth biometric parameters were manually
annotated by sonographers during the scanning process.

Evaluation metrics. In keyframe detection (stage 1), we used four metrics
to evaluate the performance of predicted keyframes p compared with the ground
truth y, as detailed in Fig. 1 of supplementary. 1) ‘Cosine simi.’ and 2) ‘absolute
time err.’ measure keyframe feature similarity and absolute timestamp error in
a set-to-set manner. As some predicted keyframes exhibiting large time errors
share the same appearance as the ground truth, 3) ‘correct time err.’ measures
the absolute keyframe timestamp error only when the maximum feature similar-
ity is below a certain threshold (e.g., 0.96). 4) ‘Keyframe num. err.’ indicates the
absolute error in the number of predicted keyframes. In the keyframe caption-
ing (stage 2), two conventional metrics ‘BLEU’ and ‘ROUGE-L’ were utilized,
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Table 1. Quantitative experimental results for each of the three stages.

Scan time saved (%) Cosine simi.(%) ↑ Absolute time err.(s) ↓ Correct time err.(s) ↓ Keyframe num. err.↓

Stage 1

33.25 (35%×95%) 94.12 ±11.29 11.96 ±5.18 9.46 ±4.58 9 ±5

31.50 (35%×90%) 94.19 ±11.50 10.57 ±4.81 8.50 ±4.53 6 ±4

26.25 (35%×75%) 96.89 ±3.75 10.37 ±6.29 7.98 ±5.90 4 ±3

17.50 (35%×50%) 96.12 ±2.76 11.36 ±6.55 8.05 ±5.53 4 ±3

0 (35%×0%) 97.02 ±2.74 13.32 ±6.15 7.66 ±5.31 5 ±3

0 (NQ/expert) 97.19/96.47 13.61/12.00 8.14/6.17 5/4
0 (p-value) 0.627 0.629 0.505 0.747

Method Bleu-1 (%) ↑ Bleu-2 (%) ↑ Bleu-3 (%) ↑ Bleu-4 (%) ↑ ROUGE-L (%) ↑

Stage 2

Alsharid et. al [1] 39.00 ±38.18 19.22 ±34.47 8.94 ±20.44 5.02 ±17.70 44.70 ±39.15

ClipCap [20] 75.80 ±36.26 68.31 ±40.01 46.33 ±43.87 41.53 ±42.75 80.17 ±34.19

Ours w/ audio data 80.77 ±32.96 74.40 ±37.19 57.42 ±42.42 50.75 ±42.99 85.31 ±30.49

Ours 79.04 ±33.69 71.65 ±37.66 48.68 ±42.85 45.40 ±41.67 83.05 ±31.04

Ours (NQ/expert) 78.57/80.31 71.08/73.20 50.87/42.68 45.23/45.86 82.70/83.99
Ours (p-value) 0.626 0.719 0.255 0.941 0.699

Method AC(mm) ↓ HC(mm) ↓ BPD(mm) ↓ Cereb(mm) ↓ FL(mm) ↓

Stage 3

Reference (mask label) 4.23 ±3.28 (2.82%) 4.46 ±2.72 (2.58%) 1.02 ±0.67 (2.15%) 0.84 ±0.87 (4.13%) 0.57 ±0.36 (1.83%)

Bano et. al [4] 7.65 ±5.84 (5.10%) 6.77 ±3.70 (3.93%) 2.74 ±2.45 (5.81%) 3.22 ±2.21 (15.89%) 1.86 ±1.89 (5.97%)

Nagabotu et. al [21] 5.26 ±3.96 (3.51%) 7.38 ±6.44 (4.28%) 1.97 ±2.23 (4.18%) 3.40 ±3.04 (16.77%) 0.95 ±1.46 (3.06%)

Ours w/ rand prompt 6.54 ±4.84 (4.35%) 8.46 ±4.29 (4.90%) 2.42 ±2.35 (5.13%) 1.82 ±1.11 (8.98%) 3.40 ±2.96 (10.94%)

Ours 5.23 ±3.81 (3.48%) 5.25 ±3.44 (3.04%) 1.25 ±0.99 (2.65%) 1.05 ±1.10 (5.16%) 2.78 ±2.64 (8.99%)

Ours (NQ/expert) 5.57/4.50 4.77/6.20 1.27/1.22 1.15/0.86 2.38/3.98
Ours (p-value) 0.972 0.214 0.186 0.227 0.740

following [1]. For the final stage 3, absolute error and relative error of AC, HC,
BPD, Cereb, FL biometry w.r.t. the clinical measurement were computed.

Implementation. MMSummary is implemented with PyTorch on RTX 8000.
In the pipeline, fI(·), fG(·), fT (·) are frozen, while other parameters are updated
with AdamW optimizer and a learning rate of 2e-5. τ and τ ′ are set as 0.96, 0.8.

Quantitative results. According to the frame-frame similarity matrix S,
frames exhibiting a high similarity score above 0.97 compared to any keyframes
within the video account for approximately 35% of the entire video. For these
frames, we observed that the sonographer was typically performing fine-grained
probe adjustments, interpretations, or biometry. By randomly dropping frames
during these activities (i.e., from these 35% frames) in various proportions (i.e.,
0%, 50%, 75%, 90%, or 95%), we obtained several shortened videos. We then
fed these videos into the keyframe detection model learned in stage 1 for eval-
uation. The shortened video, with less frame redundancy, was found to simplify
the keyframe detection process, leading to the lowest keyframe num. err. when
dropping 50%, 75% frames, as in Table 1. Moreover, our results demonstrate that
keyframe detection maintains a good performance with only a 0.84s increase in
correct time err., even for the case of saving 31.5% scanning time. This indicates
the potential of MMSummary to significantly reduce the time required for fetal
US examinations without compromising keyframe detection accuracy.

In stage 2, our method outperforms the fetal US image captioning method
[1] and baseline [20] with increments of 40.04%, 3.24% in Bleu-1, respectively.
Owing to the flexibility and reasoning capability of the language model, the sono-
grapher’s speech transcribed from audio data using [3] can also be incorporated
as an additional input prompt to GPT2 for caption reasoning. After fine-tuning
GPT2 for 10 epochs, our model achieved 5.35% improvement in Bleu-4.
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Fig. 3. MMSummary prediction (upper part) and ground truth (lower part).

For stage 3, compared with fetal biometry estimation methods [4, 21], our
method obtained the best performance in AC, HC, BPD, Cereb biometry. More-
over, we also investigated replacing the textual prompt with a random prompt
that lacked any prior information. This negatively impacted the biometry estima-
tion performance, demonstrating the importance of semantic relations embedded
in textual prompts to enhance biometry estimation performance.

Finally, we report quantitative results of our method on US videos acquired
by sonographers with two skill levels, namely newly qualified (NQ) and expert,
shown in gray cells of Table 1. An independent two-tailed t-test was performed
to compute p-values. The analysis indicates that there is no significant difference
(p-value>0.1) in the performance of our method on NQ and expert videos across
all metrics, suggesting that our method is robust to different operator expertise.

Qualitative results.

Fig. 3 (upper part) presents a multimodal summary of an example video
generated by our pipeline. Compared with the ground truth (lower part), most
keyframes are correctly detected. However, some predicted keyframes exhibit
large time errors (left two red dotted indicators). Additionally, our method only
detects one ‘full body side profile’ keyframe (right red dotted circle), while three
similar frames are shown in the ground truth. Despite these discrepancies, the
accuracy of the multimodal summary is not affected, as the image content of the
keyframe is still correct. The predicted keyframes marked with green crosses are
redundant or non-informative. In practice, these would be easily removed by a
sonographer. The keyframe with a yellow cross is present in the ground truth
but not predicted. This may be due to a sonographer incorrectly recording the
screenshot since it is of poor image quality. The predicted captions and biometry
estimations are reasonably consistent with the ground truth. Captioning errors
mainly arise for keyframes with low image quality and in distinguishing cardiac
views, which are visually similar in appearance.
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4 Conclusion

This paper focuses on the automated generation of a multimodal summary for
a given medical video, using a fetal US video as a potential clinical use case.
Imitating the real examination process, we propose a three-stage MMSummary
system that automatically generates a concise subset of keyframes summarizing
the useful video content, accompanied by corresponding text descriptions and
biometry estimations, for a fetal US video. This system has the potential to save
fetal US scanning time and reduce the expertise needed to scan.
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