
Vision-Based Neurosurgical Guidance:
Unsupervised Localization and Camera-Pose

Prediction ⋆

Gary Sarwin1[0000−0002−9011−4882], Alessandro Carretta2,3, Victor Staartjes2,
Matteo Zoli3, Diego Mazzatenta3, Luca Regli2, Carlo Serra2, and Ender

Konukoglu1

1 Computer Vision Lab, ETH Zurich, Switzerland
2 Department of Neurosurgery, University Hospital of Zurich, Zurich, Switzerland
3 Department of Biomedical and Neuromotor Sciences (DIBINEM), University of

Bologna, Bologna, Italy

Abstract. Localizing oneself during endoscopic procedures can be prob-
lematic due to the lack of distinguishable textures and landmarks, as well
as difficulties due to the endoscopic device such as a limited field of view
and challenging lighting conditions. Expert knowledge shaped by years
of experience is required for localization within the human body during
endoscopic procedures. In this work, we present a deep learning method
based on anatomy recognition, that constructs a surgical path in an un-
supervised manner from surgical videos, modelling relative location and
variations due to different viewing angles. At inference time, the model
can map unseen video frames on the path and estimate the viewing angle,
aiming to provide guidance, for instance, to reach a particular destina-
tion. We test the method on a dataset consisting of surgical videos of
pituitary surgery, i.e. transsphenoidal adenomectomy, as well as on a
synthetic dataset. An online tool that lets researchers upload their sur-
gical videos to obtain anatomy detections and the weights of the trained
YOLOv7 model are available at: https://surgicalvision.bmic.ethz.ch.
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1 Introduction

The environment during an endoscopic procedure poses numerous challenges
to the surgeons. Successfully navigating this environment requires extensive ex-
perience combined with an extremely high level of anatomical understanding
from the video feed. Challenges stem from the inherent nature of the human
anatomy, such as non-rigid deformations, the absence of obvious boundaries be-
tween anatomical structures, and adverse events like bleeding that can happen
during surgery, as well as the imaging device, such as limited field of view and
light reflection.
⋆ This work funded by the SNSF (Project IZKSZ3_218786).
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A variety of methods have been developed to assist neurosurgeons orient
themselves during neurosurgeries. While computer-assisted neuronavigation has
been a crucial tool and long-term research focus in the community [1,2], it relies
on preoperative imaging and brain shift hampers this reliability [3].

Additional real-time anatomical guidance can be achieved through interop-
erative MRI [4,5], ultrasound [6,7], the use of fluorescent substances [8,9], awake
surgery [10], and electrophysiological neuromonitoring [11,12]. These techniques
are efficient, relying on physical traits, however, also costly as they demand pro-
ficiency in a new imaging modality and, more importantly, require temporary
surgery halts or instrument retractions for intraoperative information [13].

The pursuit of a more cost-effective real-time solution, independent of addi-
tional machinery, coupled with advancements in deep learning techniques, has
propelled the development of vision-based localization methods. Various ap-
proaches, including structure from motion and simultaneous localization and
mapping (SLAM) [14–17], aim for 3D map reconstruction based on feature cor-
respondence. [15]. Many vision-based localization methods rely on distinctive
landmark positions and tracking them across frames for localization. Factors
inherent to endoscopic neurosurgical videos, such as low texture, a lack of dis-
tinguishable features, non-rigid deformations, and disruptions [15], degrade their
performance. Consequently, alternative solutions are imperative to tackle these
challenges.

Despite recent progress, the task of detecting or segmenting anatomical struc-
tures, which could serve as a foundation for an alternative approach to neuronav-
igation, remains under-explored and poses an ongoing challenge. It is important
to note that recognizing anatomy in surgical videos is more challenging than
detecting surgical tools, given the absence of clear boundaries and variations in
color or texture between anatomical structures.

Interest in applying machine learning to neurosurgery has increased, espe-
cially in pituitary surgery, and first works have explored the possibility of detec-
tion and segmentation of anatomical structures [18,19].

[18] reported promising results of anatomical structure detection, and ad-
ditionally, demonstrated a way to use the detections and their constellation to
construct a common surgical path in an unsupervised manner, allowing relative
localization during surgery. Furthermore, in [19] the authors proposed a multi-
task network to identify critical structures during the sellar phase of pituitary
surgery. Their model, PAINet, jointly predicts segmentation of the two largest
structures and centroids of the smaller and less frequently occurring structures.

In this work, we extend the model proposed in [18] to include the viewing
direction of the endoscope in the construction of the surgical path and mapping
on the path. The viewing direction plays an important role in navigation during
surgery since it heavily influences the structures and their constellations viewed
by the endoscope. Thus, including it in the model has the potential to yield
better surgical paths and more accurate guidance. Importantly, we include the
viewing direction, represented as rotational angles around the x and y axis (i.e.,
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pitch and yaw), in the model also in an unsupervised way without assuming the
presence of any camera parameters for training.

The unsupervised learning of the surgical path and viewing direction is fa-
cilitated by an Autoencoder (AE) architecture using a training set of videos.
The AE is trained to reconstruct bounding boxes of a given frame based on a
constrained latent representation. At inference time, the latent representation of
a new frame provides relative positioning and viewing angles. Unlike approaches
reconstructing a 3D environment and relying on landmarks for localization, our
method aims to construct a common surgical roadmap and localizing within
that map relying on bounding box detections. Relying on semantic bounding
box detections eliminates the need for tracking arbitrary landmarks, facilitating
handling disruptions during surgery, such as bleeding, flushing and retractions.
The learned mapping relies on the principle that the visibility, relative sizes and
constellations of anatomical structures, which can be inferred from bounding
box detections, strongly correlate with the position along the surgical trajectory
and the viewing angle of the endoscope.

The proposed approach is demonstrated on the transsphenoidal adenomec-
tomy procedure, chosen for its relatively one-dimensional surgical path. This
choice makes it well-suited for proving the concept of our suggested method.

2 Methods

2.1 Problem Formulation and Approach

Let St denote a sequence of endoscopic video frames xt−s:t. Here, s denotes the
sequence length, and xt ∈ Rw×h×c represents the t-th frame with w, h, and c
indicating the width, height, and number of channels, respectively. Our primary
goal is to embed the sequence St into a 3D latent dimension represented by the
variable z =

[
z1, z2, z3

]
.

Our approach involves identifying anatomical structures in the sequence St

and mapping the frame xt to the latent space using the identified structures.
Notably, z1 serves as an implicit surgical atlas, signifying a path from the be-
ginning of the procedure until the final desired anatomy. It is implicit because
position information along the surgical path is unavailable for constructing the
latent space. z2 and z3 represent pitch and yaw angles, respectively, forming a
rotation matrix to predict the endoscope’s viewing direction. Note that depth
and camera pose information is rarely available in standard configurations, either
because it is inaccessible or the functionality is missing. Extracting and collect-
ing this data from medical devices can be cumbersome, or not possible due to
the highly regulated environment and restrictions concerning modifications to
these devices. Therefore, these are modelled and learned in an unsupervised way.

To achieve this, object detection is performed on all frames xt−s:t in St, re-
sulting in a sequence of detections ct−s:t denoted as Ct. A detection ct ∈ Rn×5

includes binary variables yt = [y0t , . . . , y
n
t ] ∈ 0, 1n indicating presence of struc-

tures in the t-th frame and bounding box coordinates bt = [b0
t , . . . ,b

n
t ]

T ∈ Rn×4.
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An autoencoder architecture is employed to embed Ct into zt =
[
z1t , z

2
t , z

3
t

]
. The

encoder maps Ct to zt, and the decoder reconstructs ĉt =
(
ŷt, b̂t

)
, representing

detections for the last frame in a given sequence. z1t is used to generate ŷt and

b̂It =
[
b̂I,0t , . . . , b̂I,nt

]T
, the bounding box location reconstruction assuming pitch

and yaw angles are zero, i.e., in a centred view. z2t and z3t are used to build a
rotation matrix Rt, as shown in Figure 1, to model variability due to differences
in viewing angles. The final bounding box reconstructions, b̂t, are obtained by
rotating the bounding-box centre coordinates of b̂It with Rt and keeping the
same bounding-box size in the rotated position.

The model parameters are updated to ensure that the prediction with the
rotated centre coordinates, ĉt, fits ct in a training set, as elaborated in the
following.

2.2 Object Detection

Our method involves the identification of anatomical structures by detecting
them as bounding boxes in video frames. For this purpose, we utilize the YOLOv7
network in the object detection phase of our pipeline [20]. The network is trained
on endoscopic videos from a training set, where frames are sparsely labelled with
bounding boxes. Subsequently, the trained network is applied to all frames of the
training videos to generate detections for these classes on every frame. These de-
tections serve as the input for training the subsequent autoencoder, which models
the embedding. For further processing, the instrument class was omitted as this
class does not necessarily correlate with the position on the surgical path.

2.3 Embedding and Camera-Pose

The encoder of the AE comprises multi-head attention layers followed by fully
connected layers, ultimately reducing the input to 3 latent dimensions, where z1t
represents the position on the surgical path, and z2t and z3t represent pitch and
yaw angles, which represent the rotation angles of the camera with respect to a
centred view. A transformer-based encoder is employed to encode the temporal
information in the sequence of detections.

The decoder consists of two fully connected networks, the first generating the
class probabilities ŷt of ĉt, and the second generating the corresponding bound-
ing boxes b̂I

t from z1t in the centred view. To obtain bounding box reconstructions
in the observed view, the centre coordinates of the predicted bounding boxes b̂I

t

are rotated by multiplying them with the rotation matrix R̂t, as explained in
Section 2.1, to obtain b̂t, the second component of ĉt. The AE is designed to
reconstruct only the last frame ct in Ct since z1t is intended to correspond to the
current position. However, it considers s previous frames to provide additional
information in determining the latent representation zt of xt.

The loss function consists of a classification loss and a bounding box loss, the
latter being calculated only for the classes present in the ground truth. In the
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current setup, the fully connected network that produces the bounding boxes can
classify any view as the centred view, since the bounding box coordinates can be
rotated to fit the input even if the centred view is not at pitch and yaw angles
of zero. Therefore, for increased interpretability, we enforce that the output is
centred by feeding the output of the bounding box network together with yt

once again into the encoder by stacking the output s-times to achieve the same
input size, and add the predicted ẑ2t and ẑ3t , which should both be zero if the
view is centred, to the loss function. This leads to the objective to minimize for
the t-th frame in the m-th training video:

Lm,t =−
n∑

i=1

(
yim,t log

(
ŷim,t

)
+
(
1− yim,t

)
log

(
1− ŷim,t

))
+

n∑
i=1

yim,t

∣∣∣bi
m,t − b̂i

m,t

∣∣∣+√(
ẑ2m,t

)2
+

√(
ẑ3m,t

)2
,

where | · | denotes the l1 loss.
The total training loss is then the sum of Lm,t over all frames and training

videos. The proposed loss function can be viewed as maximizing the joint like-
lihood of a given y and b with a probabilistic model utilizing a mixture model
for the bounding boxes.

3 Experiments and Results

3.1 Datasets

In this work two datasets were utilized, a medical dataset and a synthetic dataset.

Fig. 1. The model comprises an encoder and a decoder that consists of two fully con-
nected networks. The encoder takes Ct as input and embeds this sequence into a 3D
latent representation. The decoder consists of two fully connected networks to generate
the class probabilities ŷt and the bounding box coordinates b̂I

t from z1t . Furthermore,
the encoder outputs z2t and z3t that are used to construct a rotation matrix to rotate
the predicted bounding boxes around the pitch and yaw axes.
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Fig. 2. An overview of the model used for the creation of the synthetic dataset.

Medical Dataset: The dataset utilized for object detection contains 166
videos documenting transsphenoidal adenomectomy procedures in 166 patients.
These videos, captured using a variety of endoscopes across multiple facilities
over 10 years, were made accessible under general research consent. Expert neu-
rosurgeons annotated the videos, encompassing 16 distinct classes, namely, 15
anatomical structure classes and one class for surgical instruments. The dataset
encompasses approximately 19,000 labelled frames. Each class has one instance
per video, except for the instrument class since various instruments are catego-
rized under the same class. Among the 166 videos, 146 were allocated for training
and validation purposes, while the remaining 20 were purposed for testing. De-
spite the utilization of data from various centres, it is important to acknowledge
potential biases introduced by the geographical vicinity of these centres.

Synthetic Dataset: For quantitative analysis, a synthetic dataset was cre-
ated in Blender [21] with ground truth. A 3D environment was built to rep-
resent a surgical path with various structures. Ground-truth object detection
labels could be extracted from the software. Eight different objects were mod-
elled, akin to different anatomical structures, with a single instance per object
to emulate the medical setting. To train the AE, a video moving through the
environment was recorded with random viewing directions, moving forward and
backwards several times. In total, the data consists of 16502 frames with corre-
sponding ground-truth object detection labels. The model is depicted in Figure
2.

3.2 Implementation Details

The YOLO network was trained with identical parameters and implementation
as in [18], which follows standard implementation as reported in [20].

The AE integrates a transformer encoder comprising six transformer encoder
layers, each with five heads, and an input size of s×15×5, where s is established
as 64 frames. Following this, the output dimension of the transformer encoder
undergoes reduction through three fully connected layers to sizes of 512, 256,
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and 128, respectively, employing rectified linear unit (ReLU) activation func-
tions between layers. Subsequently, the final fully connected layer reduces the
dimensionality to zt ∈ R3, employing a sigmoid activation function to obtain z1t ,
and a tanh activation function for z2t and z3t . Moreover, the decoder composed
of two fully connected networks, namely the class decoder and bounding box de-
coder, have two fully connected layers, elevating the dimensionality of the latent
variable z1t from 1D to 8, to n, and from 1D to 32, to n × 4, correspondingly.
The initial layer of both of those networks is succeeded by a ReLU activation
function, while the final layer adopts a sigmoid activation function. Furthermore,
for z2t and z3t , an output of −1 and 1 represents a −90 and 90 degrees rotation
around the respective axis, these outputs are then converted to radians for the
construction of the rotation matrix.

For the AE’s training, the AdamW optimizer [22] is employed in conjunction
with a warm-up scheduler, which linearly increases the learning rate from 0 to
1 × 10−4 over a span of 60 epochs. The model is trained for a total of 2500 epochs
for the synthetic, and 270 epochs for the medical dataset. The model has ap-
proximately 4.6M parameters in the setup for the medical dataset. The inference
times for the YOLO network and our encoder are 13 ms (1920 pixels, NVIDIA
A100-40GB), and 20 ms (Intel Core i7-6700K), respectively. These times suggest
that the combined inference time of 33 ms is suitable for real-time applications.

3.3 Results

Anatomical Detection: The YOLOv7 trained on the medical dataset reaches
a mean average precision 53.4% at a 0.5 intersection over union threshold as also
was reported in [18].
Quantitative Assessment of the Embedding: Due to the absence of all
camera parameters, the exact modeling of rotation is an ill-posed task. However,
we show that even though we introduce significant simplifications and substitute
the homography matrix with a straightforward rotation matrix, we can still ap-
proximate the angles of rotation. We test on 1022 sequences which were recorded
in Blender under random viewing angles moving through the model. We report
a mean error in angle predictions of 0.43, and 0.69 degrees with a standard
deviation of 2.38 and 1.74 degrees, for the pitch and yaw angle, respectively.

Additionally, we examine the correlation between the predicted location along
the surgical path with the real depth of the synthetic model for a video travel-
ling through the model. We do this for both our AE and the model proposed
in [18]. We expect our AE that takes rotation into account to embed space more
representative compared to an AE that does not consider rotation. More specif-
ically, our AE should be able to map depth to the surgical path and account for
different views by taking the rotation into account, whereas the previous model
that only maps to the surgical path without rotation would need to occupy more
space in the 1D latent space to describe various views of the same location and
thereby describing depth less accurately. Our AE achieved a Pearson correlation
coefficient of 0.97 whereas the previous model proposed in [18] achieved 0.94.
Qualitative Assessment of the Embedding: Of greater importance is that
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Fig. 3. Results are shown that depict the predicted viewing direction of the model for
the sequences in the synthetic dataset (row 1), as well as the medical dataset (rows
2,3). Additionally, for the medical dataset, their predicted location along the surgical
path is shown. The depicted cameras are for illustrative purposes only. Finally, in the
bottom row images are shown that are mapped to the same location along the surgical
path by the AE. We can see the same anatomical location from different points of view
and during different stages of the surgery.

the model can tell the surgeon whether the viewing direction is right, or whether
the camera should be pointed in another direction, and additionally can tell the
surgeon whether in that direction should be looked more or less. In Figure 3
sequences are shown for the medical dataset, together with the predictions zt.
The arrows plot the negative predictions of z2t and z3t to visualize the general
direction the camera is pointed in and the magnitude. For illustrative purposes,
a camera model is depicted to visualize the camera’s orientation. The sequences
visualize the ability of the model to extract various viewing directions from the
images which correspond to the movement of the camera between the images
in one sequence and that the predicted viewing directions are in line with the
movement of visual landmarks between images within a sequence. The idea is
to provide a reference visualization, such as an arrow, indicating the desired or
planned viewing direction needed to locate a specific anatomical structure or
for orientation purposes. This allows surgeons to adjust the endoscope’s current
orientation by referring to the arrow, as shown in Figure 3. They do not need to
rely on exact angles; instead, they can determine the direction in which the endo-
scope should be pointed, adjusting it more or less as needed. Videos visualizing
the results are supplied as supplementary material.

Finally, in the bottom row of Figure 3, we depict images that are mapped
to the same location by our AE. These images show the same anatomical posi-
tion during different stages of the surgery as well as from different viewpoints.
When encoding the same images using the AE proposed in [18], these images
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are mapped within a range of 0.81% of the latent space instead of a single point.
This demonstrates that the proposed AE that takes rotation into account can
embed space more coherently and confirms the results of quantitative correlation
experience.

4 Conclusion

In this study, we introduced an approach to neuronavigation leveraging deep
learning techniques. Our proposed method is image-based and utilizes bounding
box detections of anatomical structures to orient itself within a surgical path
learned from a dataset of surgical videos, and additionally provides feedback
on the direction the camera, i.e. endoscope is pointing in. This is facilitated
through an AE architecture trained without supervision. Our approach enables
the localization and prediction of anatomical structures along the surgical tra-
jectory, both forward and backwards, similar to functionalities seen in mapping
applications.

However, our work also comes with certain limitations. Primarily, we have
confined our focus to a single surgical procedure in this preliminary investigation.
Extending to other surgical procedures is a goal for future research. Addition-
ally, our proposed method can be integrated with SLAM techniques, as well as
leveraging guidance from pre- or intra-operative MRI. Both of these extensions
constitute areas of future exploration. Another limitation lies in the fact that the
latent dimension only offers relative positional and angular encoding. To surpass
this limitation, additional labelling of the actual positions along the surgical
path may be necessary, as well as camera parameters.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.
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