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Abstract. 3D scene reconstruction from stereo endoscopic video data is
crucial for advancing surgical interventions. In this work, we present an
online framework for online, dense 3D scene reconstruction and tracking,
aimed at enhancing surgical scene understanding and assisting interven-
tions. Our method dynamically extends a canonical scene representation
using Gaussian splatting, while modeling tissue deformations through a
sparse set of control points. We introduce an efficient online fitting al-
gorithm that optimizes the scene parameters, enabling consistent track-
ing and accurate reconstruction. Through experiments on the StereoMIS
dataset, we demonstrate the effectiveness of our approach, outperform-
ing state-of-the-art tracking methods and achieving comparable perfor-
mance to offline reconstruction techniques. Our work enables various
downstream applications thus contributing to advancing the capabilities
of surgical assistance systems.
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1 Introduction

3D scene reconstruction represents a fundamental challenge for surgical scene
understanding [2,8,12,11]. The ability to infer accurate 3D geometry from en-
doscopic image data would have numerous important downstream tasks, such
as retrospective analysis for surgical training, integrated virtual overlays of pre-
operative image data, and augmented surgical robotics. As such, the need for
methods that yield real-time and consistent 3D estimates of the surgical site is
paramount for the next generation of surgical assistant tools.

Recent years have seen a variety of highly promising methods for 3D recon-
struction of surgical scenes. Primarily driven by advances in neural rendering,
these have shown an impressive ability to reconstruct dynamically deforming sur-
gical scenes [15,18,17,16,9]. Unfortunately, they are limited by offline processing
or lack physical constraints to control tissue deformations. Other approaches
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originating from natural images, such as video-based tracking [5,19] and multi-
camera reconstruction [10], have also shown great potential, while their refine-
ment to surgical scenes is not always evident. The recently introduced benchmark
for soft-tissue trackers in robotic surgery [3] will also provide interesting algo-
rithmic developments despite its focus on sparse-point tracking and not dense
tracking – the latter being essential for most downstream applications.

In this work, however, we focus on online 3D reconstructions from stereo en-
doscopic video data. Drawing from recent developments in Gaussian splatting [6],
which allows for fast reconstruction and rendering, we propose a novel frame-
work by way of dense point tracking in the endoscopic scene. Unlike traditional
methods that assume a fixed topology at initialization [10,15], our approach dy-
namically initializes a set of Gaussian models and updates as new scene parts
become visible over time. We incorporate per-Gaussian learning rate modulation
to ensure accurate optimization while retaining information from past frames.
Additionally, we integrate optical flow motion initialization to ease convergence
in single-camera settings. Finally, we parametrize deformations using a small
set of control points distributed on the scene surface and proportional to scene
complexity. The reduced number of control points, allowed by using Gaussian
kernel interpolation in the deformation fields, results in faster fitting times, sim-
pler geometric priors, and quicker tracking. To validate our method, we evaluate
it on the publicly available StereoMIS dataset. We outperform state-of-the-art
tracking algorithms and demonstrate comparable performance to offline 3D re-
construction methods 4.

2 Method

Our scene reconstruction framework is designed to densely track surface points
in a video sequence (Fig. 1). Each frame t of the video consists of tuple ft =
(it,dt,Pt) containing the RGB image, the depth map, and the camera pose,
respectively. Our tracking method models the scene using a combination of static
Gaussian splatting and non-rigid deformations. The parameters of the model are
optimized in an online manner based on photometric, geometric, and physical
constraints by minimizing the reconstruction error between each video frame ft
and the synthetically generated frame f̂t. The subsequent sections describe the
scene representation model and the online fitting algorithm.

2.1 Scene Model

Canonical and non-rigid scenes. The rigid component of the scene, known
as canonical scene, is modeled via Gaussian splatting [6] using a collection G =
{gi}Gi=1 of 3D colored Gaussians. A colored Gaussian is defined by a tuple gi
containing the position µi ∈ R3, the scale si ∈ R3, the orientation qi ∈ H,

4 Code: https://github.com/mhayoz/online_endo_track, data:https://zenodo.
org/records/10867949

https://github.com/mhayoz/online_endo_track
https://zenodo.org/records/10867949
https://zenodo.org/records/10867949
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Fig. 1: Overview of our proposed scene reconstruction and dense tracking
method.

and the color ci ∈ R3 of the Gaussian. The covariance of the Gaussian can be
trivially computed from its orientation and scale as Σ = R(q) diag(s)2R(q)T ,
where R(q) is the rotation matrix corresponding to the quaternion q.

Tissue deformations are an integral part of surgical scenes. We model these by
warping the canonical surface with a translation vector field ∆µ : R3 → R3 and a
rotation vector field ∆q : R3 → H. These warps act additively over the locations
and orientations of the Gaussians of the canonical scene. For the Gaussian gi,
its warped location and orientation are then µ′

i = µi + ∆µ(µi), and q′
i =

qi+∆q(µi), respectively. Note that the scales of the Gaussians are not warped,
as we expect nearly isometric tissue deformation.

The deformation fields are modelled with a collectionK = {(pk, δµk, δqk)}Kk=1

of control points. Each control point is a tuple containing its position pk ∈ R3,
a translation offset δµk ∈ R3, and an orientation offset δqk ∈ H, which serve as
the parameters of the translation and the orientation fields. Similar to [13], the
translation field at the location x ∈ R3 is defined as a weighted average,

∆µ(x) =
1∑K

k=1 w(x,pk)

K∑
k=1

w(x,pk)δµk, (1)

where the Gaussian kernel, w(x1,x2) = exp
(
−γ ∥x1 − x2∥22

)
, is used to mea-

sure the contribution of control point k to location x, and the hyperparameter γ
determines the rate of decay in the influence of the control points over distance.
The orientation field is defined similarly using the orientation offsets of the con-
trol points.

Rendering. Following [6], the image rendering function rimage takes a collection
of Gaussians G and the camera pose P and computes the color of the pixel at
location u ∈ R2 as,

rimage(u;G,P) =
G∑
i=1

cω[i] · αω[i]

i−1∏
i′=1

(
1− αω[i′]

)
, (2)

where sequence ω contains the indices of the Gaussians sorted by depth from
the camera. The factor αi is the opacity corresponding to Gaussian gi at pixel u
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after projection onto the screen space. Details on computing ω and Gaussian
projection can be found in [6]. Analog to image rendering, the depth rendering
function replaces color with depth, while the opacity rendering function replaces
color with a constant value of 1. We obtain the synthetic color image î(G,P),

depth d̂(G,P) and opacity ô(G,P) by evaluating the corresponding rendering
functions at all image pixels {up}Pp=1.

2.2 Model fitting

Model fitting works in an online manner. For each new frame at time t, we
find the model parameters Gt and Kt that minimize the differences between the
measured images it,dt and their predicted counterparts ît, d̂t. Our optimiza-
tion approach proceeds in three steps: first, the canonical scene is updated with
new Gaussians covering previously unseen areas of the scene; second, control
points Kt are initialized using optical flow; third, the parameters in Gt and Kt

are jointly optimized to minimize the reconstruction error.

Canonical scene extension: As the camera moves throughout the se-
quence, establishing a canonical scene at the beginning of the sequence, as is
done in [10], is not feasible. Instead, we progressively expand the canonical scene
by adding new Gaussians to cover new regions of the scene as they appear.
We identify these regions by finding pixels with low opacity in the opacity im-
age ô(∆(Gt−1,Kt−1),Pt), and add a new Gaussian to each pixel with an opacity
smaller than 0.95. The parameters of the new Gaussian are set according to the
color and coordinates of the corresponding pixel u. Its position is found by back
projection to the 3D scene, µ = π3D(u;dt,Pt), and its scale is set to the distance
between µ and to the position µj of the nearest Gaussian.

Control point initialization: The control points of the deformation fields
are placed in the locations of a random subset of Pt Gaussians serving as anchor
Gaussians, pk = µσt[k], k ∈ {1, . . . ,Kt}, where σt contains the indices of the
anchor Gaussians obtained asKt random elements sampled without replacement
from the Gaussian index set {1, . . . , Gt}. The number of control points (and
anchor Gaussians) Kt is set to a fraction of the number of Gaussians, Kt =

Gt

k .
We set k = 64 in all our experiments.

The translation offsets δµk of the control points are initialized using optical
flow. RAFT [14] calculates optical flow between the synthetic image î(Gt,Pt)
and the frame image it, yielding screen-space offsets that are projected back
to the 3D space. The control point offsets δµk are initialized to minimize the
difference between the modeled offsets and those computed with optical flow.
This optimization, detailed in the supplementary material, efficiently finds a
closed-form solution via least squares.

Energy minimization: In the last stage, the initialized parameters in Gt

and Kt (except positions {pk}) are updated to minimize the energy function,

argmin
Gt,Kt

Eexternal + Einternal, (3)
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that describes the quality of the model fit as a combination of an external energy
and an internal energy. The external energy penalizes the deviations between the
observed image and depth and their synthetic counterparts, measured with the
standard MSE,

Eexternal = λ1

∥∥∥it − ît

∥∥∥2
2
+ λ2

∥∥∥dt − d̂t

∥∥∥2
2
. (4)

The synthetic image ît = î(∆(Gt,Kt),Pt) and depth d̂t = d̂(∆(Gt,Kt),Pt)
are rendered after warping the canonical scene with the deformation fields. The
internal energy

Einternal = λ3Erigidloc + λ4Erigidrot + λ4Eiso + λ5Evisible (5)

incorporates geometric and physical priors. Unlike previous methods, these priors
are applied only to pairs of neighbor anchor Gaussians rather than all Gaussian
pairs. Rigidity terms penalize changes in the relative positions and orientations
of neighboring anchor Gaussians,

Erigidloc =
1

4Kt

∑
i∈σt

∑
j∈N 4

i

w(µi,t,µj,t)
∥∥(µ′

j,t−1 − µ′
i,t−1)− (µ′

j,t − µ′
i,t)

∥∥2
2
, (6)

Erigidrot =
1

4Kt

∑
i∈σt

∑
j∈N 4

i

w(µi,t,µj,t)
∥∥(q′

j,t−1q
′−1
i,t−1)− (q′

j,tq
′−1
i,t )

∥∥2
2
, (7)

where σt contains the indices of the anchor Gaussians and N 4
i contains the

4 nearest anchor Gaussians to i. Similarly, the isometry term encourages the
translation field to produce nearly isometric deformations,

Eiso =
1

4Kt

∑
i∈σt

∑
j∈N 4

i

w(µi,t,µj,t)
∣∣∥(µj,t − µi,t)∥22 − ∥(µ′

j,t − µ′
i,t)∥22

∣∣ . (8)

Finally, the visibility term

Evisible =
1∑Kt

k=1 I(pk;Pt)

Kt∑
k=1

I(pk;Pt) ∥δµk∥22 (9)

penalizes deformations of the scene parts that do not project to the image,
preventing drift. The invisibility predicate I(p;P) is 1 if the point p is not visible
on the screen, and 0 otherwise.

Gradient modulation: To prevent drifting in the canonical scene, we grad-
ually slow down the updates to the parameters of its Gaussians. To this end, we
count the number of times that each Gaussian i has been updated, denoted vi,
and compute the modulation factor ρi = 2 (1− sigm(c1vi − c2)). The gradients
of the energy with respect to the parameters of the Gaussian i are multiplied by
this factor before applying the optimizer update rule.

Tracking: Our method enables tracking any surface point of the scene. Given
a surface point x at time t, tracking starts by approximating it with its closest
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Gaussian i in Gt. For subsequent frames, its 3D position is given by µ′
i. When the

point to track is given as a screen-space 2D point u, we first find its corresponding
surface point x = π3D(u;dt,Pt) and proceed as before.

3 Experimental setup and results

Datasets: We evaluated our method on the StereoMIS dataset [12] and selected
subsequences of 200 frames with 10 frames per second with resolution 512x640
pixels. All sequences contain challenging scenes with breathing motions, tissue
deformations, and occlusions. In each frame, we manually annotated 3 to 4 dis-
tinct landmarks to evaluate the tracking. We cannot benchmark our method on
the SurgT-Challenge dataset [3] because it does not feature camera poses, an
essential input to our method.

Baselines: PIPS++ [19] is a SOTA 2D long-term tracking approach. Due
to memory constraints, we partition the sequences into chunks of 50 frames.
We then initialize tracked points using the last estimated locations from the
preceding chunk and link all estimates to form complete trajectories. To simulate
dense tracking, we estimate a uniform grid of 2048 points defined in the initial
frame and linearly interpolate trajectories of the evaluation points. We mask
instrument areas in the input RGB images by filling them with black.

Similar to top-performing techniques in the SurgT-Challenge [3], we employ
frame-to-frame optical flow to estimate dense point tracking. Specifically, we
utilize RAFT [14] as a SOTA optical flow estimation method. We set the optical
flow to zero for pixels occupied by surgical instruments.

Implementation Details: We optimize the canonical scene for 1000 itera-
tions on the first frame, setting the deformation fields to zero. For each subse-
quent frame, we optimize for 100 iterations using Adam [7]. We run our code on
an NVIDIA RTX3090 GPU, resulting in an average processing time of 2 seconds
per frame. We infer depth from stereo RGB images using the stereo disparity es-
timated by RAFT [14] and mask surgical instrument pixels in Eq. 4, with masks
inferred using DeepLabv3+ [4] trained on EndoVis2018 segmentation dataset [1].
Due to the random sampling of anchor Gaussians, we run each experiment 100
times and report the average.

Metrics: Following [5], we utilize the median trajectory error (MTE), the
average position accuracy δavg, and the survival rate, as measures for accuracy
and robustness in tracking. We do not assess point tracking accuracy in 3D due
to the lack of reliable ground-truth depth estimates. Similarly, we only visually
assess the 3D reconstruction due to having only a single endoscope and thus no
hold-out views.

3.1 Results

Tab. 1 presents the point tracking results on the StereoMIS dataset. Our method
consistently outperforms the baselines across most cases and, on average, for all
three evaluation metrics. This demonstrates the accuracy captured by MTE and
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Metric Method P1 1 P2 0 P2 1 P3 1 P3 2 H1 1 H3 1 mean

MTE ↓ (px)
PIPS++[19] 67.30 10.40 317.40 5.50 21.60 129.20 10.40 80.26
RAFT[14] 42.72 83.86 197.67 10.98 18.31 126.18 21.66 71.63

ours 21.04 7.91 14.29 4.14 14.20 10.51 8.60 11.53

δavg ↑ (%)
PIPS++[19] 42.90 66.20 31.20 77.80 81.10 33.90 66.20 57.04
RAFT[14] 41.62 37.07 34.04 67.02 77.80 29.56 66.67 50.54

ours 32.36 66.89 61.14 80.46 83.67 54.66 68.50 63.95

survival ↑ (%)
PIPS++[19] 37.00 100.00 57.30 93.80 82.20 62.40 100.00 76.10
RAFT[14] 50.33 53.67 57.33 89.33 82.25 59.50 80.63 67.58

ours 70.90 100.00 87.45 100.00 84.20 87.67 91.13 88.77

Table 1: Experimental results on StereoMIS dataset.

δavg and the robustness of our method indicated by the survival rate. Our method
achieves a 100.0% survival rate in two cases, indicating successful tracking of all
points until the end of the sequences without failure. All methods accurately
track points embedded on textured surfaces, as illustrated in Fig. 2 (top). They
also handle breathing motion and tool-induced deformation, which validates the
physical constraints imposed by our method.

Our method handles occlusions and remains robust against motion blur
caused by rapid camera movement, as illustrated in Fig. 2 (middle) at t = 12.
In contrast, PIPS++ fails to track points with occlusions lasting longer than its
chunk size, yet our method handles arbitrarily long occlusions, as depicted in
Fig. 2 (bottom), where all points are tracked even after more than 100 frame
occlusions between t = 20 and t = 112.

In some cases, our method struggles to capture tissue deformations accu-
rately after long occlusions in regions with repetitive or no texture. This is
attributed to unobserved tissue deformations, causing discrepancies between the
estimated and actual deformations, leading to incorrect convergence, as illus-
trated in Fig.2 (middle) at t = 83 and t = 157. Note, our method is not intrin-
sically limited to short sequences but tracking in a real surgical scenario may
pose unaddressed challenges for long-term tracking and reconstruction of large
scenes.

Comparison against offline reconstruction methods Tab. 2 provides
an additional comparison against state-of-the-art offline endoscopic scene re-
construction methods [15,18]. Our method outperforms EndoNerf and achieves
comparable results to EndoSurf while being online and using only a fraction of
the processing time. Example images and implementation details for [15,18] are
provided in the supplementary material.

Ablation study We present an ablation study in Tab. 3. sparse refers to the
deformation representation using a sparse set of control points, whereas dense
explicitly represents the deformation for each Gaussian as in [10]. The most sig-
nificant elements include the isometry energy Eiso, the visible energy Evisible, and
the sparse deformation representation. While less critical, optical flow initializa-
tion and local-rigid energies still enhance effectiveness and robustness, which
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Fig. 2: 2D point tracking over time results. Annotated ground-truth points are
marked with triangles, PIPS++ with squares, and ours with crosses.

Method online processing time MTE ↓( px) δavg ↑ (%) survival ↑ (%)

EndoNerf [15] ✗ 7h 50.70±63.05 31.22±17.17 22.54±22.05
EndoSurf [18] ✗ 11h 7.78±4.89 67.87±10.41 87.88±14.49

ours ✓ 7min 11.53±5.51 63.95±17.23 88.77±10.00

Table 2: Comparison to offline 3D reconstruction methods on StereoMIS. Metrics
are reported as the mean ± std over all sequences.

is evident in the increased standard deviation of metrics when omitted from
optimization.

Downstream application - 3D semantic segmentation: Our method
achieves dense point tracking and coherent 3D scene reconstruction, facilitat-
ing downstream tasks like 3D semantic segmentation. We use the segmentation
network defined in section 3 to infer semantic classes for each pixel, assigning
them to Gaussians upon creation. Once assigned, semantics remain unchanged,
enabling straightforward projection and propagation in 3D, as shown in Fig. 3.
Visualizations for all scenes are available in the supplementary materials.

4 Conclusion

We proposed a framework for online 3D scene reconstruction and dense tracking
from stereo endoscopic video. To achieve this, we represent the scene as a collec-
tion of Gaussians that dynamically extend as the scene is explored and model
tissue deformations through a sparse set of control points with physical priors.
Through point tracking evaluation on the StereoMIS dataset, we validate the
physical priors and demonstrate consistent online 3D reconstruction capability,
outperforming state-of-the-art video tracking methods. We show the practical-
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Description Erigid Eiso Evisible sparse flow MTE ↓ (mm) δavg ↑(%) survival ↑ (%)

ours ✓ ✓ ✓ ✓ ✓ 11.53±5.51 63.95±17.23 88.77±10.00
w/o local-rigid ✗ ✓ ✓ ✓ ✓ 12.26±8.31 61.72±19.06 84.50±12.12
w/o iso loss ✓ ✗ ✓ ✓ ✓ 17.18±9.99 55.68±18.17 78.18±18.91
w/o inv. loss ✓ ✓ ✗ ✓ ✓ 17.55±11.23 53.36±19.26 82.63±19.83

dense ✓ ✓ ✓ ✗ ✓ 16.69±8.69 49.82±17.13 83.48±14.91
w/o flow ✓ ✓ ✓ ✓ ✗ 13.00±6.99 58.36±17.47 86.41± 16.40

Table 3: Ablation study on StereoMIS. Metrics are reported as the mean ± std
over all sequences.

Fig. 3: 3D semantic segmentation as a downstream application. Semantic classes
are overlayed: gall-bladder (purple), liver (red) and plastic tubes (yellow).

ity of our framework on 3D semantic segmentation as a downstream application,
highlighting its potential in surgical training, augmented reality overlays, and
robotic assistance. Future efforts should focus on enhancing speed to achieve
real-time processing, extending the method to long sequences and validating its
robustness in real-world scenarios.

Disclosure of Interests. The authors have no competing interests to declare that

are relevant to the content of this article.
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