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Abstract. Medical image segmentation is crucial for clinical diagnosis.
The Segmentation Anything Model (SAM) serves as a powerful foun-
dation model for visual segmentation and can be adapted for medi-
cal image segmentation. However, medical imaging data typically con-
tain privacy-sensitive information, making it challenging to train foun-
dation models with centralized storage and sharing. To date, there are
few foundation models tailored for medical image deployment within
the federated learning framework, and the segmentation performance,
as well as the efficiency of communication and training, remain unex-
plored. In response to these issues, we developed Federated Foundation
models for Medical image Segmentation (FedFMS), which includes the
Federated SAM (FedSAM) and a communication and training-efficient
Federated SAM with Medical SAM Adapter (FedMSA). Comprehensive
experiments on diverse datasets are conducted to investigate the per-
formance disparities between centralized training and federated learn-
ing across various configurations of FedFMS. The experiments revealed
that FedFMS could achieve performance comparable to models trained
via centralized training methods while maintaining privacy. Further-
more, FedMSA demonstrated the potential to enhance communication
and training efficiency. Our model implementation codes are available at
https://github.com/LIU-YUXI/FedFMS.

Keywords: Medical image segmentation · Federated learning · Founda-
tion model.

1 Introduction

Medical image segmentation aims to identify and separate structures or regions
in medical images [25, 16], which is crucial for clinical care. Very recently, the
Segmentation Anything Model (SAM) [7] has garnered widespread attention as
a powerful foundation model for visual segmentation. Many works fine-tuning
SAM in the medical images have achieved advanced results, such as the Medical
SAM Adapter (MSA) [26], 3DSAM-adapter [5] and [27].

However, medical imaging data typically contain privacy-sensitive informa-
tion, making it difficult to centralized storage and sharing [11, 22]. Moreover,
training large models often involves data that is distributed across various geo-
graphic locations or institutes. Transmitting large volumes of data can lead to
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increased communication costs and delays in transmission. Federated learning [8]
offers a solution by enabling model training on distributed datasets without the
need to centralize data in one location [13]. Additionally, distributed training of
large models allows for the distribution of computational requirements [19].

To date, deploying foundation models for medical images within the federated
learning framework is rare. There are two main issues that remain unexplored:
First, can foundation models trained based on federated learning harness the
powerful capabilities of foundation models, and maintain performance compara-
ble to those trained based on centralized training when facing Non-Independent
and Identically Distributed (Non-IID) datasets? Second, the federated learning
of foundation models requires significant communication resources and training
costs, is there a more efficient method for its federated learning training?

To address the above issues, we have collected a large number of real multi-
center medical datasets and developed Federated Foundation models for Medical
image Segmentation (FedFMS) to investigate both its performance of segmen-
tation and training efficiency. FedFMS includes two federated foundation models,
the Federated SAM (FedSAM) and a communication and training-efficient Fed-
erated SAM with Medical SAM Adapter (FedMSA). For FedSAM, we fine-tune
all parameters of the pre-trained SAM on each client. For FedMSA, we efficiently
fine-tune the parameters of the adapters and decoder of the pre-trained MSA
on each client. Then, we aggregate the parameters on the global server using
the FedAvg [14] algorithm. To our knowledge, this study is the first comprehen-
sive investigation into the application of federated foundation models within the
medical domain. Our contributions can be summarized as follows:

(1) Dataset Collection. We have collected various multi-institutional datasets
to serve as benchmarks for evaluating the performance of federated foundation
models in medical image segmentation. This offers comprehensive and reliable
evaluation data for federated medical segmentation.

(2) Model Development. We have developed a federated learning frame-
work named FedSAM based on the foundation model SAM, which enables dis-
tributed training of medical images and demonstrates stability and effective-
ness. To further explore more efficient methods, we have also built the FedMSA
framework. These models could serve as baselines and be beneficial for further
promoting the federated foundation models for medical image segmentation.

(3) Experimental Analysis. We have conducted an in-depth investiga-
tion into the performance disparities between centralized training and federated
learning across different configurations of FedFMS with various datasets. Our
investigation will provide an insight overview of the feasibility and effectiveness
of a federated large-scale model for medical images in real-world clinical settings.

2 Method

2.1 Preliminary Methods

SAM Architecture SAM is a large data-driven image segmentation model.
It constructs a dataset named SA-1B, consisting of 11 million images and 100
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Fig. 1. The illustration of FedSAM and FedMSA. FedSAM is a federated learning
framework with (a) SAM. FedMSA is a federated learning framework with (b) MSA.

million masks, to drive its training. The image encoder utilizes a standard Vision
Transformer (ViT) [2, 23] pre-trained by Masked Autoencoders. In our study, we
set SAM using the ViT-B/16 and ViT-L/16 variants. ViT-B/16 represents the
base-scale version of ViT, implemented with 768 convolutional kernels. ViT-L
represents the large-scale version, implemented with 1024 convolutional kernels.
The output of the image encoder is a 16× downsampled embedding of the input
image. The mask decoder is a lightweight modified Transformer decoder block
that includes bidirectional cross-attention and a dynamic mask prediction head.

MSA Architecture MSA efficiently fine-tunes the SAM architecture for med-
ical images to enhance its medical capabilities. Fine-tuning allows the model to
retain the knowledge gained from extensive data while strengthening its abilities
in new domains. In the encoder, MSA freezes the pre-trained SAM parameters
and inserts two adapter modules at each ViT block. The adapter is a bottle-
neck model that sequentially uses down-projection, ReLU activation, and up-
projection. Both projections are implemented using simple MLP layers. MSA’s
decoder is the same as SAM’s. MSA fine-tunes all parameters of the decoder.

2.2 Federated Foundation Models

Figure 1 illustrates the FedFMS framework, comprising multiple clients for local
training and a server for parameter aggregation, all utilizing the same founda-
tional model (e.g., SAM or MSA). The federated learning of SAM and its more
efficient variant MSA corresponds to FedSAM and FedMSA, respectively.

Client-side Model Training Each client possesses a fixed local dataset and
sufficient computational resources to perform mini-batch updates. The number
of clients is K. Each client adopts the same BCE loss and the same model (SAM
or MSA), which is initialized with pre-trained SAM parameters before training.
FedSAM To achieve simultaneous segmentation of multiple classes, we omit the
input prompts and prompt encoder, perform a multi-class segmentation header
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by adopting a two-dimensional convolution with a 1× 1 kernel after the original
SAM decoder, mapping the output mask to H ×W × c, where c is the number
of segmentation classes, H is the height and W is the width of the predictive
mask. Our SAM is shown in Figure 1 (a). The local SAM is initialized by global
parameters Wt = {W (d)

t ,W
(e)
t }, where W (e)

t is the parameters of the encoder and
W

(d)
t is the parameters of the decoder. In the k-th client, the updated parameters

is W k
t+1 = {W (d)

t+1,k,W
(e)
t+1,k}, where W

(e)
t+1,k is the updated parameters of the

encoder and W
(d)
t+1,k is the updated parameters of the decoder.

FedMSA For MSA, we fine-tune the parameters of adapters in the encoder
(denoted as W (a)

t ), and all parameters in the decoder. Our MSA’s decoder adopts
the same multi-class segmentation decoder as our SAM. The features obtained
by fine-tuning the encoder propagate to the top layers of the decoder, so all
parameters of the decoder need to be fine-tuned. The parameter of the SAM
decoder is lightweight, resulting in a low fine-tuning cost. The structure of MSA
is shown in Figure 1 (b). We use MSA to build a more efficient federated learning
framework for three reasons. (1) MSA performs well in fine-tuning tasks for
medical image segmentation. (2) Only training adapters and decoder requires
less computational cost compared to training the entire SAM. (3) During global
parameter aggregation, only the parameters of the adapters and decoder need to
be transmitted and calculated. During the federated t-th round, the local model
is initialized by fetching global model parameters Wt = {W (d)

t ,W
(a)
t } from the

server. In the k-th client, the updated parameters is W k
t+1 = {W (d)

t+1,k,W
(a)
t+1,k},

where W
(a)
t+1,k is the updated parameters of the adapters.

Server-side Model Aggregation The server distributes a global model and
receives synchronized updates from all clients at each federated round. We use
FedAvg as the aggregation method. The aggregation is formalized as Wt+1 ←

1∑K
k=1 N

(local)
k

∑K
k=1(N

(local)
k ·W k

t+1), where N
(local)
k is the amount of data in client

k. Though more complex algorithms could also be considered, FedAvg has shown
good performance due to the strong generalization capabilities of SAM.

2.3 Dataset Preparation

We collected and constructed four Non-IID federated learning datasets with dif-
ferent modalities and types from public datasets. The example cases and sample
numbers of each data are presented in Figure 2. Following the methodology of
MSA, all images are preprocessed to a shape of 1024 × 1024 × 3 before input,
and the size of the output mask is 256× 256.

– Prostate Cancer. Extracted from public prostate cancer MRI imaging datasets
from various medical institutions [12, 10] and NCI-ISBI 2013.

– Brain Tumor. Derived from FeTS2022 [18], which is a collection of multi-
institutional clinical acquisition mp-MRI scans of gliomas. The segmentation
target we use is the GD-enhancing tumor (ET - label 4) on T1ce images.
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Fig. 2. The example of images and Ground Truth from different clients across four
datasets (a-d) and the comparison in the results of FedMSA, MSA, FedSAM and SAM.
The bottom right corner of each image indicates the Dice for it or the whole nii.

– Nuclei. It is a nuclei segmentation dataset from [4, 3, 24, 15, 9]. Cells from
different tissues in the PanNuke dataset are distributed across different clients.

– Fundus. Gathered from four distinct fundus photography images datasets
[21, 17, 1, 28] for optic cup (OC) and optic disc (OD) segmentation tasks.

Brain Tumor and Prostate Cancer images are in 3D nii format, while SAM
can only handle 2D images. Therefore, we slice them along the depth direction,
converting a 3D image with depth d into d slices of 2D images. Since the max-
imum pixel value in nii format is much larger than 255, we calculate the 1st
percentile of pixel values for each nii file as the upper bound of high-intensity
pixels and perform linear normalization. Other RGB images are also linearly
normalized to the range (0,1) with 255 as the maximum value.
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3 Experiments

As the first study to investigate image segmentation foundation models with
federated learning, we conducted experiments to investigate three questions:
(1) FedFMS performance: Can SAM maintain its capabilities when trained under
federated learning, comparable to SAM under centralized training?
(2) Model Efficiency: Is FedMSA a more efficient and cost-saving method in
federated learning training? How does its performance compare to FedSAM?
(3) Pre-training Impact: Can pre-training on large dataset enrich the prior knowl-
edge of our federated foundation models, thereby surpassing conventional ones?

3.1 Experimental Settings

We adopt two commonly used metrics, Dice (the Dice coefficient) and IOU (In-
tersection over Union), to quantitatively evaluate the segmentation results. We
treat the dataset of each client as an unseen test set, while the data of each
remaining client is divided into training and validation sets at a ratio of 9:1.

In the federated learning process, all clients use the same hyper-parameter
settings, and the local model is trained using Adam optimizer with a batch size
of 6. The momentum parameters for Adam are set to 0.9 and 0.999, respectively.
The pre-trained model utilized is provided by SAM publicly. We conducted a
total of 100 federated training rounds, with each local epoch set to 1. The frame-
work is implemented using PyTorch and trained on NVIDIA A800.

3.2 Results

Overall Comparison To explore the impact of federated learning on founda-
tion model, we compare FedMSA with MSA and compare FedSAM with SAM.
We use FedU-Net and FednnU-Net as baselines. U-Net [20] is a commonly used
and effective convolutional network for biomedical image segmentation. nnU-
Net [6] is a more robust method compared to U-Net. We use the pre-trained
ViT-B architecture of SAM as default. FedMSA-L and SAM-L are extension
experiments using ViT-L. Results are presented in Table 1 and Figure 2.
FedFMS performance Both federated foundation models (FedMSA, FedSAM)
and non-federated foundation models (MSA, SAM) achieve promising results
across various tasks. FedSAM, which fine-tunes all parameters, outperforms
FedMSA in Prostate, Nuclei, and Fundus segmentation. In Brain Tumor dataset,
FedMSA outperforms FedSAM. FedMSA-L and MSA-L with larger parameter
count also perform similarly, and both outperform models based on Vit-B. The
results demonstrate the potential of SAM in federated learning for medical image
segmentation. This suggests the feasibility of further extending advanced feder-
ated learning algorithms to foundation models for the medical image domain.

The performance of FedSAM, FedMSA and FedMSA-L is significantly higher
than FedU-Net and FednnU-Net. The preprocessing of nnU-Net under federated
learning is limited in effectiveness, and its training on Non-IID datasets is also
unstable. Using pre-trained SAM is beneficial for medical image segmentation
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as it can mitigate unseen domain issues, attributed to its abundant background
knowledge. The varying data quantities and distributions across clients result in
inconsistent convergence directions among different clients. This inconsistency
further leads to suboptimal performance of the globally aggregated model on
the server. The foundation model demonstrates higher robustness and stabil-
ity, which can alleviate the above issues. Therefore, through fine-tuning SAM,
FedMSA, FedSAM and FedMSA-L can achieve advanced performance.

Table 1. The comparison of FedSAM, SAM, FedMSA, MSA, FedU-Net, and ablation
variants (denoted as italics) on different medical image datasets. The p-values between
FedSAM and SAM, as well as between FedMSA and MSA, are both greater than 0.5.

Dataset Prostate Cancer
Client BIDMC HK I2CVB ISBI ISBI1.5 UCL Average
Model Dice IOU Dice IOU Dice IOU Dice IOU Dice IOU Dice IOU Dice IOU

FedU-Net 0.498 0.498 0.684 0.645 0.034 0.023 0.649 0.590 0.671 0.640 0.563 0.542 0.516 0.490
FednnU-Net 0.457 0.375 0.602 0.534 0.448 0.372 0.747 0.681 0.612 0.544 0.671 0.591 0.590 0.516
FedSAM 0.810 0.774 0.841 0.808 0.798 0.768 0.837 0.792 0.785 0.754 0.844 0.809 0.819 0.784

SAM 0.793 0.758 0.837 0.799 0.731 0.697 0.812 0.759 0.786 0.754 0.848 0.807 0.801 0.762
FedSAM (-PT) 0.688 0.493 0.542 0.490 0.583 0.567 0.459 0.393 0.378 0.352 0.474 0.449 0.521 0.457

SAM (-PT) 0.515 0.500 0.679 0.619 0.511 0.486 0.577 0.496 0.517 0.470 0.520 0.471 0.553 0.507
FedMSA 0.769 0.737 0.809 0.777 0.754 0.720 0.821 0.771 0.795 0.765 0.859 0.820 0.801 0.765

MSA 0.749 0.711 0.813 0.775 0.748 0.716 0.803 0.758 0.782 0.752 0.841 0.801 0.789 0.752
FedMSA (-PT) 0.499 0.499 0.527 0.495 0.582 0.564 0.565 0.481 0.525 0.504 0.419 0.400 0.520 0.491

MSA (-PT) 0.546 0.522 0.422 0.389 0.474 0.444 0.495 0.423 0.476 0.445 0.482 0.427 0.482 0.442
FedMSA-L 0.806 0.777 0.869 0.838 0.772 0.743 0.838 0.793 0.821 0.793 0.867 0.834 0.829 0.796

MSA-L 0.810 0.779 0.845 0.814 0.764 0.742 0.836 0.792 0.811 0.782 0.869 0.834 0.823 0.791

Dataset Brain Tumor Fundus

Client 1 6 18 21 Average REFUGE
OD OC

Model Dice IOU Dice IOU Dice IOU Dice IOU Dice IOU Dice IOU Dice IOU
FedU-Net 0.860 0.822 0.851 0.806 0.861 0.824 0.857 0.817 0.857 0.817 0.848 0.743 0.840 0.733

FednnU-Net 0.772 0.711 0.804 0.740 0.781 0.721 0.785 0.727 0.786 0.725 0.843 0.733 0.796 0.671
FedSAM 0.869 0.831 0.880 0.836 0.879 0.839 0.860 0.822 0.872 0.832 0.869 0.772 0.873 0.781

SAM 0.867 0.830 0.877 0.833 0.876 0.838 0.849 0.809 0.867 0.828 0.859 0.758 0.855 0.758
FedSAM (-PT) 0.809 0.767 0.853 0.807 0.830 0.790 0.832 0.791 0.831 0.789 0.857 0.756 0.842 0.736

SAM (-PT) 0.827 0.785 0.851 0.803 0.838 0.798 0.818 0.774 0.834 0.790 0.833 0.721 0.821 0.710
FedMSA 0.877 0.838 0.876 0.832 0.884 0.847 0.862 0.823 0.875 0.835 0.860 0.760 0.858 0.763

MSA 0.876 0.837 0.871 0.828 0.883 0.845 0.853 0.814 0.871 0.831 0.881 0.792 0.866 0.773
FedMSA (-PT) 0.808 0.767 0.856 0.811 0.811 0.770 0.826 0.784 0.825 0.783 0.846 0.742 0.842 0.736

MSA (-PT) 0.837 0.797 0.849 0.804 0.844 0.805 0.830 0.790 0.840 0.799 0.845 0.739 0.829 0.719
FedMSA-L 0.887 0.850 0.883 0.841 0.895 0.859 0.876 0.840 0.885 0.847 0.869 0.772 0.869 0.867

MSA-L 0.886 0.850 0.875 0.832 0.890 0.854 0.877 0.840 0.882 0.844 0.879 0.794 0.817 0.739

Dataset Fundus (Continued Table)

Client ORIGA G1020 Drishit-GS1 Average
OD OC OD OC OD OC OD OC

Model Dice IOU Dice IOU Dice IOU Dice IOU Dice IOU Dice IOU Dice IOU Dice IOU
FedU-Net 0.794 0.667 0.830 0.722 0.550 0.427 0.449 0.346 0.677 0.529 0.779 0.650 0.717 0.592 0.725 0.613

FednnU-Net 0.771 0.636 0.804 0.686 0.541 0.404 0.406 0.297 0.679 0.536 0.725 0.607 0.709 0.577 0.683 0.565
FedSAM 0.816 0.698 0.846 0.748 0.717 0.602 0.556 0.456 0.715 0.571 0.777 0.643 0.779 0.661 0.763 0.657

SAM 0.820 0.703 0.831 0.729 0.621 0.512 0.546 0.444 0.676 0.526 0.767 0.632 0.744 0.625 0.750 0.641
FedSAM (-PT) 0.765 0.628 0.811 0.697 0.420 0.314 0.347 0.266 0.537 0.395 0.640 0.490 0.645 0.523 0.660 0.547

SAM (-PT) 0.777 0.645 0.778 0.777 0.482 0.364 0.432 0.335 0.509 0.371 0.718 0.579 0.650 0.525 0.687 0.600
FedMSA 0.822 0.705 0.850 0.753 0.733 0.614 0.560 0.463 0.692 0.545 0.769 0.632 0.777 0.656 0.759 0.653

MSA 0.834 0.723 0.844 0.746 0.693 0.573 0.551 0.449 0.716 0.576 0.798 0.672 0.781 0.666 0.765 0.660
FedMSA (-PT) 0.789 0.661 0.817 0.704 0.475 0.362 0.465 0.374 0.557 0.408 0.683 0.536 0.667 0.543 0.702 0.587

MSA (-PT) 0.804 0.683 0.811 0.704 0.573 0.451 0.489 0.393 0.481 0.347 0.683 0.536 0.676 0.555 0.703 0.588
FedMSA-L 0.836 0.725 0.845 0.748 0.732 0.630 0.587 0.494 0.704 0.559 0.762 0.625 0.785 0.672 0.766 0.684

MSA-L 0.855 0.754 0.846 0.750 0.734 0.632 0.582 0.485 0.717 0.573 0.776 0.643 0.796 0.688 0.755 0.654

Dataset Nuclei
Client Adrenal Esophagus Bile-duct Uterus MoNuSAC TNBC MoNuSeg Average
Model Dice IOU Dice IOU Dice IOU Dice IOU Dice IOU Dice IOU Dice IOU Dice IOU

FedU-Net 0.742 0.618 0.781 0.655 0.717 0.598 0.777 0.645 0.559 0.404 0.703 0.548 0.678 0.519 0.708 0.569
FednnU-Net 0.798 0.684 0.807 0.690 0.754 0.642 0.803 0.681 0.588 0.435 0.747 0.606 0.713 0.563 0.744 0.614
FedSAM 0.810 0.698 0.807 0.693 0.765 0.659 0.832 0.717 0.623 0.472 0.776 0.643 0.746 0.602 0.765 0.640

SAM 0.819 0.709 0.777 0.655 0.768 0.665 0.824 0.706 0.606 0.457 0.709 0.564 0.677 0.518 0.740 0.611
FedSAM (-PT) 0.666 0.533 0.736 0.597 0.690 0.561 0.742 0.598 0.572 0.415 0.636 0.485 0.629 0.468 0.667 0.523

SAM (-PT) 0.686 0.548 0.711 0.571 0.669 0.539 0.713 0.564 0.587 0.434 0.667 0.513 0.643 0.479 0.668 0.521
FedMSA 0.806 0.694 0.802 0.688 0.763 0.655 0.805 0.682 0.640 0.490 0.730 0.600 0.741 0.598 0.755 0.630

MSA 0.813 0.702 0.805 0.693 0.769 0.664 0.824 0.707 0.629 0.477 0.630 0.486 0.665 0.506 0.733 0.605
FedMSA (-PT) 0.692 0.558 0.728 0.589 0.684 0.556 0.739 0.596 0.562 0.406 0.628 0.477 0.642 0.482 0.668 0.523

MSA (-PT) 0.649 0.507 0.662 0.523 0.696 0.552 0.662 0.527 0.559 0.406 0.622 0.458 0.658 0.517 0.644 0.499
FedMSA-L 0.811 0.701 0.805 0.699 0.767 0.662 0.824 0.706 0.644 0.494 0.769 0.635 0.761 0.622 0.769 0.646

MSA-L 0.820 0.711 0.814 0.703 0.802 0.703 0.823 0.704 0.630 0.480 0.683 0.542 0.700 0.547 0.753 0.627
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Table 2. Model efficiency analysis on FedMSA and FedSAM.

Learnable Parameter Training Time GPU Memory Usage FLOPs Predicting Time
FedMSA FedSAM FedMSA FedSAM FedMSA FedSAM FedMSAFedSAMFedMSAFedSAM
14.7 B 93.7 B 739.9 min911.4 min52,274 MiB58,478 MiB 5.7 T 13.4 T 0.127 s 0.118 s

Further Discussion The test results of FedMSA and MSA are generally similar
across various datasets, and the performance of FedSAM and SAM is also similar.
The federated learning paradigm leads to slight differences in their performance.
The discrepancies are slightly larger in their tests on clients TNBC and MoNuSeg
for Nuclei segmentation. The Nuclei dataset has the smallest dataset among all
the datasets. Moreover, there are large differences among different types of cells.
These factors lead to inconsistent convergence directions in federated learning.

Model Efficiency Analysis We calculate the learnable parameter count, train-
ing time in GPU (the average training time in Fundus dataset), GPU memory
usage in each client, and the estimated FLOPs (Floating Point Operations) for
both forward and backward propagation for FedMSA and FedSAM, as shown in
Table 2. The number of parameters (denoted as n) to be trained and updated
determines the model’s training speed and communication cost. The amount
of parameters to be communicated in each round of federated learning is 2n.
The results show that FedMSA freezes a large number of parameters in the en-
coder, resulting in a significantly reduced parameter count and FLOPs compared
to FedSAM, and consequently reducing communication and training costs. We
calculate the average time required to predict each 2D image, as shown in "Pre-
dicting time" in Table 2. During the prediction process, FedMSA takes a bit
longer because it has more parameters from adapters compared to FedSAM.

Pre-training Impact SAM is pre-trained on a large-scale natural dataset.
To investigate the effectiveness of this pretraining for medical image segmenta-
tion and its impact on federated learning, we conducted an ablation study. For
FedSAM, FedMSA, SAM and MSA, we constructed variants FedSAM (-PT),
FedMSA (-PT), SAM (-PT) and MSA (-PT) without using pre-trained parame-
ters, and the experimental results are illustrated in Table 1. The results show that
not using pre-trained parameters from SAM leads to a drastic decrease in perfor-
mance. In some cases, FedSAM (-PT) performs worse than SAM (-PT), which
is due to the convergence of no pre-trained SAM under federated learning is not
stable. FedSAM (-PT) and FedMSA (-PT) sometimes perform worse than the
lightweight model FedU-Net, for example in experiments Adrenal, Esophagus,
Bile-duct, Uterus, TNBC, MoNuSeg on Nuclei dataset and HK, ISBI, ISBI1.5,
UCL on Prostate Cancer dataset. This indicates that the pretraining knowledge
of SAM is crucial for its effectiveness under the federated learning paradigm,
which enables our federated foundation models to far surpass the traditional
federated learning models (e.g., FednnU-Net). The code for our implementation
of FednnU-Net is available at https://github.com/LMIAPC/FednnU-Net.
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4 Conclusion

In this study, we propose a solution to deploy the foundation model SAM and
its efficient variant MSA within the federated learning framework, referred to
as FedSAM and FedMSA respectively. We collected various multi-institutional
federated datasets for our experiment. By leveraging rich pre-training knowl-
edge, FedSAM and FedMSA demonstrate excellent performance in addressing
the inherent training issues of federated learning, achieving comparable results
to the foundation models in centralized training. Additionally, we conducted an
efficiency analysis between FedMSA and FedSAM. Our study is the first to intro-
duce foundation models for federated learning in the medical image domain. It
will encourage the integration of more foundation models into privacy-preserving
federated learning frameworks, which holds profound practical significance.
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