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Abstract. Lymph node (LN) assessment is an indispensable yet very
challenging task in the daily clinical workload of radiology and oncol-
ogy offering valuable insights for cancer staging and treatment planning.
Finding scatteredly distributed, low-contrast clinically relevant LNs in
3D CT is difficult even for experienced physicians along with high inter-
observer variations. Previous CNN-based lesion and LN detectors often
take a 2.5D approach by using a 2D network architecture with multi-slice
inputs, which utilizes the pretrained 2D model weights and shows better
accuracy as compared to direct 3D detectors. However, slice-based 2.5D
detectors fail to place explicit constraints on the inter-slice consistency,
where a single 3D LN can be falsely predicted as two or more LN in-
stances or multiple LNs are erroneously merged into one large LN. These
will adversely affect the downstream LN metastasis diagnostic task as the
3D size information is one of the most important malignant indicators.
In this work, we propose an effective and accurate 2.5D LN detection
transformer that explicitly considers the inter-slice consistency within
a LN. It first enhances a detection transformer by utilizing an efficient
multi-scale 2.5D fusion scheme to leverage pre-trained 2D weights. Then,
we introduce a novel cross-slice query contrastive learning module, which
pulls the query embeddings of the same 3D LN instance closer and pushes
the embeddings of adjacent similar anatomies (hard negatives) farther.
Trained and tested on 3D CT scans of 670 patients (with 7252 labeled
LN instances) of different body parts (neck, chest, and upper abdomen)
and pathologies, our method significantly improves the performance of
previous leading detection methods by at least 3% average recall at the
same FP rates in both internal and external testing.

Keywords: Lymph node detection · Detection transformer · Slice-consistency
· contrastive learning.
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Fig. 1: (a-c) 2D predictions with confidence of existing LN detection method [21]
on consecutive slices, and yellow boxes will be filtered due to the low confidence.
(d) Merged 3D predictions in the sagittal view. The inconsistent predictions
across consecutive slices results in the entire lymph node instance being divided
into two separate ones.

1 Introduction

Lymph node (LN) detection in computed tomography (CT) scans is a critical
task in medical imaging, offering valuable insights for staging and treatment
planning in various cancers [8,7]. However, the heterogeneity in size, shape, and
density of LNs, along with their often ambiguous boundaries and low contrast
against adjacent soft tissues (e.g., vessels, muscles, and esophagus), poses signif-
icant challenges for both manual diagnosis and automated detection systems.

Due to its importance and difficulty, automatic LN detection and segmen-
tation has been attracting increasing attentions [1,18,3,27,6,28,10]. Early work
often relied on hand-crafted features and heuristic rules, which may not general-
ize well across the diverse manifestations of lymph nodes in medical imaging [1,9].
The advent of deep learning, particularly the application of convolutional neural
networks (CNNs), has led to a paradigm shift in medical image analysis, as well
as the LN detection [18,3,2,10,22]. Wang et al. [20] improved 2D Mask R-CNN
[11] by proposing a global-local attention module and a multi-task uncertainty
loss to detect LN in abdomen MR images. Yan et al. [22] adopted 2.5D backbone
to extract 3D context information from multi-slice-input, and reported supe-
rior LN detection performance when compared to purely 3D detection methods
[2]. While improved detection results are accomplished, these 2D or 2.5D CNN
detectors have inherent limitations: (1) They rely on many hand-crafted com-
ponents, e.g., anchor matching strategy and non-maximum suppression (NMS)
post-processing, which involves tuning a large number of hyper-parameters. (2)
Although 2.5D approaches achieve the leading performance, simple multi-slice
input or merging 2D slice features with a 3D convolution is not sufficient to
chracterize the 3D continuity of LNs. This often leads to inconsistent predic-
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tions between consecutive slices of the same LN. This will adversely affect the
downstream LN metastasis diagnostic task as the 3D size information is one of
the most important indicators. For example, as shown in Fig. 1, slice i−1 to slice
i+ 1 belong to the same 3D LN. However, slice i has low prediction confidence,
which divide the single LN instance into two separate ones after the 3D box
merging.

Recently, a new detection paradigm, i.e., DEtection TRansformer (DETR)
[5], was proposed for natural images by reformulating the detection task as a
set prediction problem. In contrast to CNN-based detectors, it directly pre-
dicts a set of objects without relying on manual heuristics such as anchors and
post-processing procedures. Among the recently developed DETR-based detec-
tors [26,17,14,25,15], DINO [25] and Mask DINO [15] have achieved the leading
performance by introducing a denoising technique. However, transformer-based
detectors also suffer from the aforementioned slice prediction inconsistency issue.

To conquer above issues, built upon the latest DETR-based detectors (e.g.,
DINO, Mask DINO), we propose a novel cross-slice query contrastive learning
module for the slice-consistent LN detection in CT. The key idea is to pull
the similarity of the same 3D LN across slices closer in the embedding space
and push the embeddings of adjacent similar anatomies (hard negatives) far-
ther. This provides more discriminative and consistent LN instance features,
which generate more accurate 3D LN instances after box merging. Moreover,
we have replaced their original 2D backbone with a 2.5D backbone, allowing
them to extract 3D context information from multi-slice inputs while leveraging
pre-trained 2D weights. To provide a more comprehensive evaluation of our LN
detection method, we collect and curate a large scale of LN CT scans containing
670 patients (with 7252 labeled LN instances of both enlarged and smaller sizes)
from 5 institutional datasets across different body parts and diseases. Among
them, three datasets are used as internal data to develop and internally test the
LN detection performance while the rest two are used for independent exter-
nal testing. In both internal and external testing, the proposed cross-slice con-
trastive learning module and 2.5D feature fusion bring significant improvement
for DETR-based detectors and surpass the well-tuned CNN-based detectors by
a large margin.

2 Methods

In this section, we first provide an overview of our LN detection framework in
Sec. 2.1. Then, the details of the proposed cross-slice query contrastive learning
module are introduced in Sec. 2.2.

2.1 LN Detection Framework

Fig. 2 depicts the proposed framework, which consists of a 2.5D CNN backbone,
and a detection transformer (i.e., transformer encoder and decoder) with multi-
ple prediction heads (i.e., mask head, box head, and class head). We elaborate
on each component below.
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Fig. 2: The training framework of our methods. Given a target slice xt and its
neighbor slice xt+δ, the shared-weight 2.5D backbone and transformer gener-
ate the object queries on them, respectively. The queries are used to predict
masks, boxes, and classes and do cross-slice contrastive learning. Queries of the
same color belong to the same 3D LN instance. The denoising branch, position
embeddings, and intermediate queries are omitted in the figure for clarification.

2.5D Backbone. As noted in [22], 3D context information is important for
distinguishing LNs from other tube-shaped organs such as vessels and esophagus.
However, directly applying 3D CNNs is memory-consuming and lacks pre-trained
weights. To bridge the gap, we adopt the 2.5D feature fusion layer in [23] to
leverage the rich 3D context information across slices. Specifically, we extract
four upper and four lower slices from the CT scan to serve as the 3D context
of the central target slice (see details in the supplementary). A feature map is
then extracted for each slice with a shared 2D CNN, e.g., ResNet50 [12] with
ImageNet pre-trained weights in our methods. Finally, the 2.5D fusion layer is
inserted after each res-block to produce the multi-scale 3D-context-enhanced
feature maps for the target slice (i.e., multi-scale 2.5D fusion scheme).

Detection Transformer. The overall architecture of our detection transformer
is based on a unified DETR-like object detection and segmentation framework,
Mask DINO [15]. It first takes the multi-scale feature maps from the 2.5D back-
bone with corresponding positional embeddings as input. After feature enhance-
ment with the transformer encoder, top-scoring encoder features (used as region
proposals) are selected to initialize the object queries Q ∈ RN×C for the trans-
former decoder. These queries will be further updated by a set of cross- and
self-attention layers in the decoder, and then fed into the multiple prediction
heads to produce the final N predictions for the input slice, including masks,
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boxes, and classification results. Furthermore, an additional denoising branch is
added to accelerate training convergence.

Then we calculate the pair-wise matching cost [15] between N predictions
and total ground truth. For each ground truth, its optimal matched prediction
can be assigned efficiently with the Hungarian algorithm [5]. Finally, the whole
model is optimized with a combination loss,

Ltotal = λ1Lcls + λ2Lbox + λ3Lmask + Lcontra (1)

where loss weights λ1, λ2, and λ3 are set to 1.0, 2.0 and 5.0 as [15]. In detail,
Lcls is the focal loss. Lbox is the combination of L1 loss and GIoU loss [19], while
Lmask adopts cross-entropy and dice loss. Lcontra is the cross-slice query contrast
loss which will be described in the next section.

2.2 Cross-slice Query Contrastive Learning

More discriminative query embeddings can help distinguish LN instances on
different slices, thereby improving the prediction consistency of the same in-
stance across slices. Therefore, we introduce contrastive learning between slices
to pull the query embedding of the same 3D LN instance closer in the embedding
space and push the embedding of different 3D LN instances and similar adjacent
anatomies far away.

Given a target slice xt and its neighbor slice xt+δ, where δ is a random
slice interval sampled from [1, T ], the corresponding object queries are Qt =
{q1t , q2t , . . . , qNt } and Qt+δ = {q1t+δ, q

2
t+δ, . . . , q

N
t+δ}, respectively. A simple two-

layer MLP followed by an L2 normalization layer, named contrastive head ϕ, is
then adopted to project queries into the embedding space.

For the m-th LN instance on the target slice xt, we assume the previous
Hungarian matching has assigned the im-th object query in Qt as its matched
query. If the same instance also appears on the slice xt+δ, we denote the jm-th
object query in Qt+δ as the matched query. Thus, two indexes im and jm will
give us a pair of object queries qimt and qjmt+δ that are consistent in their instance
identity. As shown in Fig. 2, the LN instances (boxes marked in blue and orange)
appearing on the slice xt may have different positions and appearances on the
neighbor slice xt+δ, but their object queries should be as close as possible in
embedding space. To achieve this, we take the query qjmt+δ as positive sample for

query qimt , and the top K queries in Qt+δ \ qjmt+δ with the highest classification
scores as negative samples. Then the contrastive loss for slice xt to xt+δ can be
defined as follows:

Lt→t+δ
contra = −

M∑
m=1

log

 exp
(
ϕ(qimt )ϕ(qjmt+δ)

)
exp

(
ϕ(qimt )ϕ(qjmt+δ)

)
+
∑K

k=1 exp
(
ϕ(qimt )ϕ(qkt+δ)

)
 (2)

where M is the number of shared LN instances between slice xt and xt+δ, and
ϕ(q) means the query projection in the embedding space. Similarly, we can derive
the contrastive loss for slice xt+δ to xt and the total contrastive loss Lcontra =
Lt→t+δ
contra + Lt+δ→t

contra.
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3 Experiments and Results

3.1 Experimental Setup

Datasets. In this work, we collected and curated CT scans from 5 LN datasets of
different body parts (neck, chest, and upper abdomen) and various diseases con-
taining a total of 670 patients and 7252 instance-level LN annotations. Among
them, NIH-LN [4] is a public LN dataset, while the rest are from four clini-
cal centers (denoted as Center1-4 for simplification). Specifically, NIH-LN com-
prises of 89 lung cancer patients. Center1 and Center4 include 256 and 50 head
& neck cancer patients, respectively. Center2 provides 91 esophageal cancer pa-
tients. Center3 contains 184 patients with different types of diseases (lung cancer,
esophageal cancer and infectious lung disease). More descriptions including LN
regions and characteristics of each dataset can been seen in the supplementary.
We use NIH-LN and datasets of Center 1-2 to develop and internally test
the LN detection performance (70% training, 10% validation, and 20% testing).
Datasets of Center3-4 are used for independent external testing.

Implementation Details. The code will be available at Github URL. All
CT scans are first resampled to a constant spacing of 0.8 × 0.8 × 2.0mm, and
image intensity was then clipped to [−200, 300] HU. In training, each mini-
batch consists of 8 samples, i.e., 4 pairs of neighbor slices. We use RAdam
optimizer with the initial learning rate of 2 × 10−4 and a weight decay of 1 ×
10−4 for 30 epochs training. Besides, cosine annealing scheduler is adopted to
reduce the learning rate to 1 × 10−5 with a warm-up step of 500 iterations.
For the cross-slice query contrastive learning module, we set the total object
query number N , negative sample number K and neighborhood range T to
300, 100, and 3, respectively. Detailed ablation results of these parameters are
summarized in Table 2. Data augmentation includes random scaling, cropping,
rotation, intensity scaling, and gamma augmentation. In inference, we select the
op 20 ranked query predictions as the 2D detection results in each slice, and
then merge the 2D detection boxes to 3D ones following [21,22]. All experiments
are conducted with PyTorch 1.12 on a Tesla A100 GPU. The average time for
training and inference is 0.6 GPU days and 5s per CT scan, respectively.

Evaluation Metrics. Following previous lesion detection works [1,23,24,21,22],
we use the free-response receiver operating characteristic (FROC) curve as the
evaluation metric and report the recall at 0.5, 1, 2, 4 FPs per CT scan. When
comparing each predicted 3D box with the GT 3D boxes, the predicted box is
counted as true positive if the 3D intersection over detected bounding-box ratio
(IoBB) is larger than 0.3 [23,22]. As the short axis of metastatic LNs are almost
all larger than 5mm [10], we only detect LNs with short axis equal to or larger
than 5mm during inference. If a GT LN smaller than 5mm is detected, it is
neither counted as a TP nor an FP. In training, we still use LN annotations of
all sizes.

https://github.com/CSCYQJ/MICCAI24-Slice-Consistent-Lymph-Nodes-DETR
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Fig. 3: Qualitative LN detection results. The first row shows slice-level predic-
tion results. Blue, green, red, and yellow denote for GTs, TPs, FPs and FNs,
respectively. The second row is the merged 3D predictions in the sagittal view.

3.2 LN Detection Results

Comparison to state-of-the-art methods. We conduct extensive compar-
ison evaluation for LN detection, including the leading DETR-based general
object detection methods (DINO [25] and Mask DINO [15]), medical lesion de-
tection methods (MULAN [23], LENS [21], nnDetection [2], A3D [24] + SATr
[16]), and the leading medical segmentation method nnUNet [13].

The quantitative evaluation results for internal and external testing are pre-
sented in Table 1. Several observations can be drawn. First, in internal testing,
our 2.5D feature fusion and cross-slice contrastive learning both significantly im-
prove the detection performance for DINO and Mask DINO. For example, the
2.5D fusion increase the Mask DINO average recall from 48.59% to 51.43%, where
the contrastive learning further improves the average recall by 3.51%. Second,
when compared to the lesion detection methods, our Mask DINO† achieves sub-
stantial improvement over nnDetection, LENS, and MULAN by 19.43%, 6.87%,
and 6.97%, respectively. It is worth noting that LN detection by segmentation
generally yields inferior performance as compared to direct detection methods,
e.g., nnUNet only obtains 51.00% recall while its FPs is as high as 4.2. Finally,
in external testing, our method generalizes well, where Mask DINO† increases
the original Mask DINO’s average recall by 5.98% and outperforms the second
best lesion detection model MULAN by 3.15%.

We also show some qualitative comparisons with other leading detection
methods in Fig. 3. It can be observed that our method exhibits higher sensi-
tivity and reduces FPs. Furthermore, the merged 3D predictions illustrate that
our cross-slice contrastive learning module promotes the prediction consistency
between slices avoiding one 3D LN being falsely divided as two or multiple LNs
being erroneously merged into one large LN.

Parameter analysis. The influence of parameters in our cross-slice contrastive
learning method is summarized in Table 2. Regarding the negative sample num-
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Table 1: Results for our method and other detection methods averaged on the
internal hold-out test sets and external datasets. ”*” means w/ 2.5D backbone.
”†” means w/ 2.5D backbone and cross-slice query contrastive learning. Best in
bold, second underline.

Model

Internal test External test

Recall(%)@FPs ↑ Recall(%)@FPs ↑
@0.5 @1 @2 @4 Avg. @0.5 @1 @2 @4 Avg.

nnDetection [2] 19.60 27.70 40.55 54.18 35.51 23.24 33.04 43.07 51.09 37.61

A3D [24] + SATr [16] 31.07 40.93 51.44 61.47 46.23 30.83 38.29 46.33 55.17 42.66

LENS [21] 31.04 42.97 53.72 64.54 48.07 29.39 39.52 52.39 60.84 45.53

MULAN [23] 29.51 42.21 55.14 65.01 47.97 32.20 42.01 51.34 60.33 46.47

DINO [25] 28.43 39.10 48.32 59.38 43.81 27.95 35.55 44.78 54.06 40.58

DINO* 30.99 40.88 54.30 65.02 47.80 29.47 35.95 45.80 57.12 42.08

DINO† 35.52 45.27 55.80 66.65 50.81 31.40 38.49 49.15 57.97 44.25

Mask DINO [15] 34.29 42.26 52.15 65.64 48.59 29.76 37.86 49.85 57.11 43.64

Mask DINO* 31.26 47.94 58.69 67.83 51.43 28.56 39.62 51.98 61.37 45.38

Mask DINO†(Ours) 39.70 49.94 60.75 69.38 54.94 34.74 44.50 55.09 64.17 49.62

nnUNet [13] 51.00@4.2 FPs (vs. 71.11) 42.30@3.7 FPs (vs. 62.08)

ber K (Table 2(a)), we can see that different K numbers all bring noticeable
gains (from 1.27% to 3.51%) over the 2.5D Mask DINO*, which further demon-
strates the effectiveness of our proposed cross-slice contrastive learning method.
Among them, selecting the top-50 and top-100 queries achieve the highest per-
forming results. In comparison, using all queries yields the least improvement.
We hypothesize that queries with low classification scores may represent easy
negative samples that contribute little to contrastive learning.

Regarding the slice interval range T (Table 2(b)), we conclude that: (1) over-
all, the proposed cross-slice query contrastive learning is effective under a wide
range of slice interval, i.e., from T = 1 to T = 4, and achieves the best average
recall when T = 3. (2) When the slice interval becomes large, e.g., T = 4, the
performance drops markedly. This may be because that appearance and context
of two far away slices of the same LN instance change dramatically, especially for
CT scans with coarse slice thickness, which hampers the efficiency of contrastive
learning.

4 Conclusion

Lymph node (LN) assessment is an indispensable yet very challenging task in the
daily clinical workload of radiology and oncology. In this work, we propose an
effective 2.5D LN detection transformer that explicitly considers the inter-slice
consistency within a LN. It first enhances a detection transformer by utilizing
an efficient multi-scale 2.5D fusion scheme to leverage pre-trained 2D weights.
Then, we introduce a novel contrastive learning between slices to pull the query
embedding of the same 3D LN instance closer and push the embedding of differ-
ent 3D LN instances and other similar adjacent anatomies far away. Trained and
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Table 2: Effect of the negative sample number K and slice interval range T for
cross-slice query contrastive learning module.

K
Recall(%)@FPs ↑

@0.5 @1 @2 @4 Avg.

20 35.51 49.29 59.92 68.08 53.20

50 37.59 50.70 60.49 69.66 54.61

100 39.70 49.94 60.75 69.38 54.94

All 36.96 46.27 59.67 67.88 52.70

(a) Negative sample number K

T
Recall(%)@FPs ↑

@0.5 @1 @2 @4 Avg.

1 34.98 50.37 61.27 68.84 53.87

2 34.66 50.73 60.83 70.25 54.12

3 39.70 49.94 60.75 69.38 54.94

4 36.14 49.36 58.74 68.40 53.16

(b) Interval range T

tested on 3D CT scans of 670 patients of different body parts and pathologies,
our method significantly improves the performance of previous leading detection
methods in both internal and external testing.

Disclosure of Interests. The authors declare no competing interests.
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