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Abstract. Recently, the Diffusion Probabilistic Model (DPM)-based
methods have achieved substantial success in the field of medical im-
age segmentation. However, most of these methods fail to enable the
diffusion model to learn edge features and non-edge features effectively
and to inject them efficiently into the diffusion backbone. Additionally,
the domain gap between the images features and the diffusion model fea-
tures poses a great challenge to prostate segmentation. In this paper, we
proposed CriDiff, a two-stage feature injecting framework with a Criss-
cross Injection Strategy (CIS) and a Generative Pre-train (GP) approach
for prostate segmentation. The CIS maximizes the use of multi-level fea-
tures by efficiently harnessing the complementarity of high and low-level
features. To effectively learn multi-level of edge features and non-edge
features, we proposed two parallel conditioners in the CIS: the Boundary
Enhance Conditioner (BEC) and the Core Enhance Conditioner (CEC),
which discriminatively model the image edge regions and non-edge re-
gions, respectively. Moreover, the GP approach eases the inconsistency
between the images features and the diffusion model without adding ad-
ditional parameters. Extensive experiments on four benchmark datasets
demonstrate the effectiveness of the proposed method and achieve state-
of-the-art performance on four evaluation metrics. The source code will
be publicly available at https://github.com/LiuTingWed/CriDiff.
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1 Introduction

Prostate cancer, as the second most common cancer affecting men, necessitates
accurate diagnostic tools for effective management [17]. Precise segmentation
of the prostate is critical for the diagnosis and treatment planning of prostate
cancer. With the development of deep learning, convolutional neural networks
(CNNs) have made significant progress for prostate segmentation [7,14,18]. Al-
though the above methods achieve promising results, they use the softmax in
the cross-entropy loss overemphasizes the highest logit, leading to deterministic
predictions. However, estimating the model’s output uncertainty is crucial for
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clinical doctors to further diagnose uncertain areas, because medical segmenta-
tion problems are often characterized by ambiguities and multiple hypotheses
may be plausible [21].

Recently, Diffusion Probabilistic Models (DPMs) have led to unprecedented
advancements in content generation tasks. Because they have the capability
to generate different predictions by running multiple times, many DPM-based
methods [2,22–24] are proposed in the field of medical image segmentation. De-
spite these methods have shown great performances, the intricate anatomical
positioning of the prostate, along with its visual similarity to adjacent tissues,
presents significant challenges on accurate prediction of edge [26]. However, these
methods overlook the learning of boundary information and treat all regions with
equal importance. DermoSegDiff [2] introduces a novel boundary loss function
by calculating the distance between each foreground pixel in the ground-truth
label and the nearest background pixel. However, this weighted loss requires
careful adjustment on the coefficients to balance the learning between edge and
non-edge areas, relying on laborious trial and error. Moreover, previous DPM-
based methods inject the multi-level features of medical images stage by stage
into the diffusion backbone (e.g., high-level semantic features are injected into
deeper layers and low-level features are injected to shallower layers). This ap-
proach leads to the underutilization of multi-level features, limiting early-stage
accuracy in object localization or shaping and impeding the model’s capability
to generate fine-grained objects in later stages. Therefore, it is essential to design
a strategy that effectively learns multi-level features of edges and non-edges and
enhances utilization of these features when integrating them into the diffusion
model.

When the diffusion model applies to segmentation tasks, randomly initialized
diffusion model parameters diffuse the final prediction map under the guidance of
image conditional features from the specific data domain. The difference between
diffusion model features and conditional features creates a domain gap, especially
pronounced in prostate images. This domain gap impedes model convergence
and diminishes performance. Current DPM-based approaches in medical image
segmentation have not fully considered this issue. Consequently, it is essential to
introduce an efficient method to reduce the domain gap, enabling better feature
learning in diffusion models.

To address the aforementioned problems, we proposed a novel two-stage
framework with a feature injection strategy and a generative pre-train method
for prostate segmentation, entitled CirDiff. Specifically, we proposed the Criss-
cross Injection Strategy (CIS) for enabling the diffusion to complementarily uti-
lize multi-level features of edges and non-edge areas. To this goal, we proposed
two parallel conditioners in this strategy, named Boundary Enhance Conditioner
(BEC) and Core Enhance Conditioner (CEC). These two conditioners with dis-
tinct structures, are capable of discriminative learning of image edge features and
other non-edge regions features. The BEC employs a triangular architecture that
progressively cuts down the number of layers, focusing on learning edge textures
features. Conversely, the CEC focuses on learning non-edge semantic features
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via an inverted triangular architecture that progressively increases the number
of layers. Then, we injected them into the diffusion backbone in a crisscross man-
ner, promoting the diffusion model ability of learning edges and non-edge areas.
Furthermore, we introduced a Generative Pre-train (GP) approach for prostate
segmentation. The GP pretrains the diffusion model on generative tasks within
the target domain, aligning feature representations more closely with the target
domain. This approach narrows the domain gap between the conditional features
and the diffusion model features, thus improving model performance without in-
troducing additional parameters. In brief, the contributions of this paper are:
(1) We proposed a novel Crisscross Injection Strategy (CIS) with Boundary En-
hance Conditioner (BEC) and Core Enhance Conditioner (CEC) to enhance
the diffusion model’s capability to learning features in both edge and non-edge
areas. (2) We introduced a Generative Pretrain (GP) method for prostate seg-
mentation to reduce the domain gap between the conditional features and the
diffusion model features, improving model convergence. (3) We demonstrated our
proposed method achieving SOTA performance on three MRI prostate datasets
and one ultrasound prostate dataset under four evaluation metrics.

2 Methods

The architecture of CriDiff is shown in Figure 1. In the first stage, we leveraged
DPM’s generative power to formulate the segmentation task as a generative prob-
lem, developing a model that precisely captures the characteristics of prostate
images. In the second stage, the CIS injects both boundary and core features into
the pre-trained diffusion model in a crisscross way. To effectively learn boundary
and core areas features, we employed the proposed BEC and CEC to separately
learn the boundary and core features of prostate images, respectively. Finally, a
Gaussian noise is guided by the boundary, core and image feature information
to generate the final prediction map.

2.1 Generative Pre-train Approach

To reduce the domain gap between the conditional features and the diffusion
model features, we introduced a generative pre-train approach for prostate seg-
mentation. The diffusion model operates through two processes: initially, in the
forward process, an image is progressively noised over T steps by adding Gaus-
sian noise. Subsequently, in the reverse stage, a neural network learns to recover
the original data by reversing this noise addition. Given prostate images I0, the
reverse process can be represented as: pθ(I0:T−1 | IT ) =

∏T
t=1 pθ(It−1 | It), where

θ represents the denoising model parameters and pθ(IT ) is the latent variable
distribution. Through the training process, the parameters θ acquire the capabil-
ity to represent prostate features, enabling the transformation from a Gaussian
noise distribution to the prostate data distribution pθ(I0). Following [8], the θ is
considered as a noise prediction network ϵθ, optimized by a simple mean-squared
error:

L(θ) = ∥ϵθ(It)− ϵt∥2, (1)
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Fig. 1: Overall of our method. Up: The first stage is our proposed generative
pre-train that is described in Sec. 2.1. Bottom: After pre-training, we performed
the criss-cross injection strategy to segment prostate in Sec. 2.2 and Sec. 2.3.

where It is a noised prostate image at t step. By applying the reparameterization,
It =

√
α̂tI0 +

√
1− α̂tϵt, where α̂ represents constants hyperparameters, and

ϵt ∼ N (0, I) is noise at t step.

2.2 Boundary Enhance Conditioner and Core Enhance Conditioner

Distinct from previous method that enhances edge learning via a weighted loss
function, we proposed two parallel conditioners to decouple the learning of edge
and core information. As shown in Figure 2, the BEC starts with a higher number
of convolutional layers then decreases as the network goes deep. In contrast,
the CEC increases the number of convolutional layers as the network deepens.
Given that the sideouts of encoder are denoted as f1, f2, f3, f4 from large to
small. Then these features at each level are transformed in parallel into a same
number of dimensions (such as 64 in our implementation) via the Trans layers.
These layers follow by a combination of 3×3 convolution, batchnorm and relu.
Through these layers, we can obtain unified-channel features Bi

0 = Trans(f i)
for i from 1 to 4. In this end, the multi-level features of the BEC at the ith row
and jth colum Bi

j can be denoted as:

Bi
j =

{
BConv(Bi

j−1 ©Up(Bi+1
j )), if i+ j ≤ 4,

BConv(Bi
j−1 ©A), if i+ j = 5& i = 4, A = 0; else A = Up(Bi+1

j−1),
(2)

where BConv(·) means 3 × 3 Conv-Bn-Relu operation. © indicates the concate-
nation operation and Up(·) is an upsample operation with an upsampling rate
2. Analogously, Ci

0 = Trans(f i), i = 1− 4. The implementation of the CEC at
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Fig. 2: Detailed structures of our proposed BEC and CEC, which focus on learn-
ing the boundary and core information of the prostate under the guidance of
decoupled soft labels.

the ith row and jth colum Ci
j formulated as:

Ci
j =


BConv(Ci

j−1), if i = 4,

BConv(Ci
j−1 ©Up(Ci+1

j )©A), if i < 4& i = j, A = Up(Ci+1
j+1);

elseA = 0,

(3)

then the multi-scale features from the BEC and CEC are fed into a streamlined
FPN to obtain the integrated prostate features P i. It can be defined as:

P i = BConv(Bi
5−i ⊕ Ci

i ⊕ A), if i = 4, A = 0; else A = Up(P i+1), (4)

where ⊕ represents a pixel-wise summation operation. Finally, these multi-scale
features will be supervised by a combing Dice Loss, BCE Loss, and IoU Loss,
thus the total loss of our conditioners is:

Lc = Lbce(B
i
5−i, gb) +Lbce(C

i
i , gc) +Lbce(P

i, gp) +LIoU (P
i, gp) +LDice(P

i, gp),
(5)

where gb and gc denote the boundary label and the core label of the prostate
label gp. We apply the Distance Transformation (DT) [11] on gp to differentiate
between gb and gc, obtaining a gradient image I ′. After normalization to [0,1]
range, pixels within the object’s center exhibit the highest values, while those
distant from the center or within the background display the lowest values.
Consequently, I ′ reflects the central, more easily distinguishable aspects of the
original image. We then define the core label and the boundary label as gc =
gp ∗ I ′, gb = gp ∗ (1− I ′), respectively.

2.3 Crisscross Injection Strategy

The proposed BEC and CEC are capable of capturing boundary and core fea-
tures. However, directly injecting these features into the diffusion model in a
stage-by-stage manner results in suboptimal feature utilization. Thus, we pro-
posed a crisscross injection strategy that allows the diffusion model to focus on
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Table 1: Quantitative comparisons of DSC, IoU, HSD and ASD on three MRI
datasets and one ultrasound datasets. For brevity, we denoted these metrics as
D, I, H, and A, respectively. The top two results are marked in red, blue.

Method/Years
NCI-ISBI [5] ProstateX [12] Promise12 [13] CCH-TRUSPS [6]

D ↑ I ↑ H ↓ A ↓ D ↑ I ↑ H ↓ A ↓ D ↑ I ↑ H ↓ A ↓ D ↑ I ↑ H ↓ A ↓
Unet [16]15MICCAI .822 .786 2.32 3.99 .748 .683 3.41 3.93 .779 .676 4.25 6.57 .898 .848 5.58 7.43
Unet++ [27]19TMI .814 .777 2.30 3.76 .741 .682 3.44 3.80 .810 .715 4.12 5.06 .882 .824 5.92 7.80

TransUnet [4]21Arxiv .827 .789 2.28 3.90 .851 .795 2.92 2.33 .887 .812 3.65 2.22 .915 .874 5.36 4.43
Swin-Unet [3]22ECCV .821 .782 2.39 5.01 .792 .727 3.32 3.49 .839 .744 4.09 3.60 .908 .857 5.78 5.83
Uctransnet [19]22AAAI .813 .776 2.38 4.86 .769 .701 3.40 2.93 .875 .796 3.87 4.62 .915 .868 5.61 5.39

G-CASCADE [15]24WACV .842 .808 2.24 3.75 .844 .795 3.05 2.02 .880 .802 3.67 2.67 .915 .871 5.58 5.93
CAT-Net [9]23TMI .841 .810 2.21 4.04 .796 .743 3.31 2.67 .888 .813 3.76 2.51 .895 .850 5.76 5.01

CCT-Unet [25]23JBHI .836 .803 2.20 4.50 .803 .756 3.08 2.22 .857 .775 3.82 3.51 .902 .852 5.64 6.98
MicroSegNet [10]24CMIG .829 .796 2.25 3.86 .849 .798 2.96 2.45 .890 .817 3.66 2.19 .928 .886 5.49 4.72

SegDiff [1]21Arxiv .807 .776 2.27 4.12 .835 .788 3.07 1.93 - - - - .854 .788 5.86 7.83
EnDiff [22]22MIDL .814 .781 2.32 3.82 .815 .761 3.24 2.17 - - - - .875 .829 6.04 5.71

DermoSegDiff [2]23MICCAI .841 .806 2.14 3.79 .853 .804 2.96 2.02 .885 .809 3.69 2.64 .900 .855 5.41 4.59
MedSegDiff-V2 [24]24AAAI .828 .796 2.19 3.71 .822 .773 3.10 2.18 .888 .815 3.67 2.19 .844 .772 6.05 8.55

Ours .858 .827 2.04 3.13 .874 .824 2.86 1.85 .899 .828 3.63 2.06 .923 .883 5.35 4.17

Fig. 3: Visual comparisons of the proposed model and existing SOTA methods.

object localization in early stages and refines the object’s edges in later stages.
Following [23,24], we adopted a modified ResUNet as our diffusion backbone and
inject prostate features into the backbone layer by layer. The encoder contains
four convolutional stage with sequentially decreasing resolution. Conversely, the
decoder consists of four convolutional stages with sequentially increasing reso-
lution. We applied the cross-attention to facilitate the interaction between both
boundary and core features with the diffusion feature. Finally, the proposed
Crisscross Injection Strategy can be denoted as:

CIS =

{
Ei = CroAtt(A,Ei), if i = 1, 2, A = Ci

i ; elseA = Bi
5−i,

D5−i = CroAtt(A,D5−i), if i = 1, 2, A = Ci
i ; elseA = Bi

5−i,
(6)

where Ei means the ith outputs of encoder stage and Di is the ith outputs of
decoder stage, respectively. CroAtt(·) is the cross-attention operataion.
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Table 2: Different conditioner settings.
Index Conditioner Param

Size(M)
ProstateX [12] CCH-TRUSPS [6]

P P∗ C B D ↑ I ↑ H ↓ A ↓ D ↑ I ↑ H ↓ A ↓
(1) ✓ 53.35 .843 .778 3.01 2.46 .895 .856 5.67 5.09
(2) ✓ 53.36 .857 .799 2.95 2.21 .906 .867 5.61 4.85
(3) ✓ ✓ 54.06 .852 .801 2.95 2.26 .909 .871 5.56 4.45
(4) ✓ ✓ 54.13 .865 .811 2.85 2.09 .916 .873 5.55 4.36
(5) ✓ ✓ ✓ 54.63 .874 .824 2.86 1.85 .923 .883 5.35 4.17

Table 3: Different init method com-
parison.

Method ProstateX [12] CCH-TRUSPS [6]
D ↑ I ↑ H ↓ A ↓ D ↑ I ↑ H ↓ A ↓

Random .865 .812 2.92 1.91 .893 .858 5.68 4.72
Kaiming .868 .817 2.95 1.91 .896 .862 5.63 4.52

Ours .874 .824 2.86 1.85 .923 .883 5.35 4.17

3 Experiments

3.1 Experiment Protocol

Datasets. We performed the evaluation on four public benchmark datasets, cat-
egorized into two types: three datasets comprising MRI images (NCI-ISBI [5],
ProstateX [12] and Promise12 [13]) and one dataset consisting of ultrasound
images (CCH-TRUSPS [6]). Details of these datasets are provided in the sup-
plementary material. Metrics. To validate the proposed model, we adopt four
metrics: Dice Similarity Coefficient (DSC), Intersection over Union (IoU), Haus-
dorff Distance (HSD) and Average Surface Distance (ASD). Implementation
detail. We trained our network using the Pytorch toolbox on two RTX 4090
GPUs, employing PVT-B2 [20] as the encoder. The training utilized a batch
size of 6, the AdamW optimizer with a 1e-5 learning rate, and included 100,000
iterations. We conducted 25 ensemble runs with T=500. Pre-train phase details
are in the supplementary material.

3.2 Comparison with State-of-the-arts

The performance of the proposed method is compared with 6 general medical
image segmentation methods, including Unet [16], Unet++ [27], TransUnet [4],
Swin-Unet [3], Uctransnet [19] and G-CASCADE [15]. We also compared 3
prostate segmentation methods, including CAT-Net [9], CCT-Unet [25] and
MicroSegNet [10]. Additionally, we compared 4 DPM-based methods included
SegDiff [1], EnDiff [22], DermoSegDiff [2] and MedSegDiff-V2 [24]. For a fair
comparison, we replaced the encoder of these DPM-based methods with PVT-
B2 [20], except for the EnDiff, which does not utilize the encoder. We trained
and inferred these methods for the same number of iterations and ensemble
times as our model. Results. As shown in Table 1, our method improves the
IoU by an average of 2.1% and reduces the ASD by an average of 8.5% across
three MRI prostate datasets compared to the second-best method. On the ultra-
sound prostate dataset, the Dice and IoU metrics show only minor differences
at the thousandth digit compared to the best method. This may be due to the
simplicity of this dataset, where multiple ensemble runs might introduce noise,
slightly reducing performance. Intuitively, We visualize segmentation maps from
our model and others in Figure 3. It is obvious that our model not only achieves
precise localization but also clearly delineates boundaries for prostates of varying
sizes. More visualized results can be found in the supplementary material.



8 T. Liu et al.

Table 4: Injection strategy comparison.

Index Strategy ProstateX [12] CCH-TRUSPS [6]
SbS 2:2 1:3 3:1 D ↑ I ↑ H ↓ A ↓ D ↑ I ↑ H ↓ A ↓

(1) ✓ .856 .806 2.95 1.96 .903 .862 5.53 4.73
(2) ✓ .874 .824 2.86 1.85 .923 .883 5.35 4.17
(3) ✓ .875 .820 2.89 1.99 .927 .875 5.45 4.45
(4) ✓ .865 .816 2.91 1.95 .923 .888 5.32 4.26

Fig. 4: Visual comparisons with (1) and
(2) are shown in Table 4.

3.3 Ablation Study

Effect of BEC and CEC. We validated our proposed conditioner structures
through five ablation studies. As shown in Table 2, (1) only prostate condi-
tioner to inject. (2) a simple FPN replaced three conditioners, predicting three-
channel features representing prostate, core and boundary features for injecting.
(3) prostate and core conditioners to inject. (4) prostate and boundary condi-
tioners to inject. (5) all three conditioners to inject. When injecting the same
features, we observed that our proposed boundary and core conditioners signif-
icantly enhanced model performance compared with (2) and (5). These results
demonstrate decoupled learning of boundary and core features can more effec-
tively improve performance with a smaller model size. Moreover, compared with
(1), (3), (4) and (5), the absence of either one or both boundary and core condi-
tioners for learning and injecting features resulted in a decrease in Dice scores on
the ProstateX and CCH-TRUSPS datasets, respectively. This further highlights
the effectiveness of the boundary and core conditioner architectures.
Effect of CIS. We performed four quantitative experiments to validate the
effectiveness of CIS. As shown in Table 4, 2:2 means a ratio of injection layer
for using the proposed strategy to inject core features into the shallow two lay-
ers and detail features into the deeper two layers of both encoder and decoder.
SbS denotes that the stage by stage strategy injects boundary features and core
features into shallow layers and deeper layers with a 2:2 ratio. Compared (1)
with (2), (3), and (4), we observed that our proposed injection strategy signifi-
cantly outperforms the traditional stage-by-stage injection approach, regardless
of whether using a 3:1 or 1:3 ratio. These results strongly validate the adequacy
of utilizing multi-level features in our injection strategy. To further illustrate the
qualitative effect of our strategy, we visualized feature maps of (1) and (2) in
Figure 4. It can be seen that the proposed strategy enables the diffusion model
to focus on object localization, preventing entirely black predictions, especially
when the prostate region is small. Simultaneously, it allows the model to focus
on edge areas achieving precise edge segmentation.
Effect of GP. To validate the effectiveness of GP, we conducted a set of experi-
ments over different initialization methods (Random and Kaiming). As shown in
Table 3, our method demonstrates superior performance across two datasets on
four metrics, especially showing 3.3% and 2.8% improvements in Dice and IoU
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on the CCH-TRUSPS dataset, thereby affirming the benefits of generative pre-
training for model initialization. Through the proposed GP, the diffusion model
acquire the capability to represent prostate features, bridging the domain gap
between the conditional features and the diffusion model features. To illustrate
this point, we showcased some generated prostate images in the supplementary
material. These images clearly possess structures characteristic of prostate im-
agery and closely resemble real prostate images.

4 Conclusion

In this paper, we proposed CriDiff, a novel framework for prostate segmenta-
tion, which efficiently learns and injects multi-scale edge and non-edge features
into the diffusion network using two parallel conditioners (BEC and CEC) and a
crisscross injection strategy (CIS). To bridge the domain gap between image and
diffusion model features, we introduced a generative method without introduc-
ing additional parameters. Experimental results demonstrate that our proposed
method can achieve state-of-the-art performance in prostate segmentation.
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