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Abstract. Accurate pose estimation of surgical instruments is crucial
for analyzing robotic surgery videos using computer vision techniques.
However, the scarcity of suitable public datasets poses a challenge in this
regard. To address this issue, we have developed a new private dataset
extracted from real gastric cancer surgery videos. The primary objective
of our research is to develop a more sophisticated pose estimation algo-
rithm for surgical instruments using this private dataset. Additionally, we
introduce a novel loss function aimed at enhancing the accuracy of pose
estimation, with a specific emphasis on minimizing root mean squared
error. Leveraging the YOLOv8 model, our approach significantly out-
performs existing methods and state-of-the-art techniques, thanks to the
enhanced occlusion-aware loss function. These findings hold promise for
improving the precision and safety of robotic-assisted surgeries.
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1 Introduction

The advent of robotic surgery has revolutionized the field of medicine, offering
unprecedented precision, flexibility, and control, thereby enhancing the efficacy
of surgical procedures and improving patient outcomes [1]. A cornerstone of
robotic surgery is the accurate pose estimation of surgical instruments, a task
that relies heavily on advancements in deep learning technologies.

Traditional approaches for pose estimation rely on either handcrafted features
[8,9,10,11] or the utilization of three-dimensional coordinates [3,4,5] to ensure
robustness against adverse visible conditions in surgical videos. Additionally,
methods utilizing two-dimensional coordinates [6,7] have been introduced. These
approaches are typically developed based on public datasets such as the EndoVis
challenge dataset [12] or the RMIT dataset [11]. However, these datasets often
fail to accurately reflect real-world surgical environments, as illustrated in Fig.
1.
⋆ Corresponding author
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Fig. 1. Example of the existing datasets and our private dataset for pose es-
timation. (a) and (b) represent EndoVis challenge dataset [12] and RMIT dataset [11],
respectively. The existing datasets are artificial and not obtained from actual surgical
videos; rather, they are simulated. (c) represents our dataset to facilitate our research
effectively.

Fig. 2. Illustration of surgical instruments in our dataset. (a) represents three-
part instruments such as head, wrist, and body. (b) shows two-part instruments such
as head and body.

Recognizing the critical need for such datasets, our research endeavors to
bridge this gap by introducing a new private dataset meticulously curated from
video footage of actual gastric cancer surgeries. This dataset is specifically de-
signed to capture the dynamic and unpredictable nature of in-the-wild scenarios,
offering a rich resource for the development, training, and evaluation of advanced
pose estimation models.

In addition to addressing the dataset scarcity, our research introduces an
innovative loss function tailored to enhance the accuracy of pose estimation for
robotic surgical instruments. By focusing on minimizing the root mean squared
error, this new loss function aims to refine the precision of instrument local-
ization. The adoption of the YOLOv8 [2] model, known for its efficiency and
effectiveness in object detection, further complements our approach. The inte-
gration of an occlusion-aware loss mechanism within this model is pivotal in
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overcoming the inherent challenges of instrument occlusion and the dynamic
nature of surgical settings.

Through comprehensive experiments and evaluations, our approach demon-
strates significant improvements over existing baseline models and current state-
of-the-art methods. By leveraging our custom-built dataset and the proposed loss
function in conjunction with the YOLOv8 model, we achieve outstanding accu-
racy in the pose estimation of robotic surgical instruments. This breakthrough
not only addresses the immediate challenges in the field but also lays the ground-
work for further advancements in the integration of artificial intelligence with
robotic-assisted surgeries. The implications of our research extend beyond the
immediate improvements in surgical precision and safety, promising to catalyze
innovation and enhance the overall efficacy of robotic surgery practices.

2 Our Approach

2.1 Dataset Construction

In this study, we developed our dataset1 utilizing robotic surgery videos based
on Da Vinci robotic surgical systems. The resolution of the video is 1280×1024,
which represents our dataset is high-quality. These videos encompass various sur-
gical procedures where six common types of instruments were employed: cadiere
forceps, maryland bipolar forceps, medium-large clip applier, small clip applier,
curved grasper, and harmonic ace. These instruments were categorized into two
groups: three-part instruments and two-part instruments (See Fig. 2)2 Among
the three-part instruments, the cadiere forceps were annotated with seven key-
point coordinates, while the maryland bipolar forceps, medium-large clip applier,
and curved grasper each had six key points. The two-part instruments were an-
notated with five keypoint coordinates.

Each keypoint’s location was annotated using two-dimensional coordinates of
(x, y), where x and y represent position in the image. Additionally, to enhance the
precision of the pose estimation, visibility information was also assigned to each
keypoint. Using this information, we build a new loss function to improve the
performance of pose estimation in terms of root mean squared error (RMSE).
The visibility of keypoints was categorized as follows: a keypoint that is not
visible in the image was labeled as 0; a keypoint that is present in the image but
occluded was labeled as 1; and a keypoint that is fully visible and not occluded
within the image was labeled as 2. See Fig. 3 for details of the annotation rules.

The dataset comprises surgical videos of ten patients, which have been seg-
mented into individual frames, resulting in a total of 125, 467 images. For the

1 This dataset was created with the approval from the Institutional Review Board of
Kyungpook National University (IRB No.KNU2023-0483).

2 https://pdf.medicalexpo.com/pdf/intuitive-surgical/instrument-accessory-catalog/
75060-153581.html,
https://www.karlstorz.com/dz/en/product-detail-page.htm?productID=
1000120469&cat=1000119605

https://pdf.medicalexpo.com/pdf/intuitive-surgical/instrument-accessory-catalog/75060-153581.html
https://pdf.medicalexpo.com/pdf/intuitive-surgical/instrument-accessory-catalog/75060-153581.html
https://www.karlstorz.com/dz/en/product-detail-page.htm?productID=1000120469&cat=1000119605
https://www.karlstorz.com/dz/en/product-detail-page.htm?productID=1000120469&cat=1000119605
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Fig. 3. Illustration of annotation details. The red cross denotes the area occluded
by organs. The blue and green points represent the presence of keypoints in the image.
The yellow and purple points are outside of the image. From (X1, Y1) to (X5, Y5),
each value denotes a two-dimensional coordinate of each keypoint. The third part of
each coordinate represents the visibility of the keypoint.

division of the dataset into train and test sets, we selected three patients as a
test set to ensure that the number of keypoints maintained approximately a 2 : 1
ratio between the train and test sets, while also ensuring a roughly 5 : 1 ratio
for the number of class-wise instruments. This was done to guarantee that there
were no keypoints or instrument classes unique to either the train set or the test
set. The training set consisted of 83, 252 images, while the test set comprised
42, 215 images.

2.2 YOLOv8

YOLOv8, developed by Ultralytics in 2023, is widely used for object detection,
classification, segmentation, and human pose estimation. A notable enhancement
is the C2F module with gradient shortcut connections, which improves the fea-
ture extractor’s information flow and boosts the accuracy of detection tasks by
effectively merging features with contextual information. The backbone also fea-
tures the spatial pyramid pooling fast (SPPF) module, using three max-pooling
layers for efficient feature map pooling with reduced computational effort and
latency.

The YOLOv8 head, comprising convolutional and linear layers, processes
these feature maps to generate the final output. Its anchor-free approach for
object detection, which directly regresses bounding box coordinates, streamlines
the architecture, and potentially increases localization accuracy by eliminating
reliance on pre-defined anchor boxes.

Additionally, YOLOv8 introduces a pose estimation variant, which adds a
pose head to the standard architecture. This model predicts keypoints for each
object, calculating the position and confidence value for each keypoint. To train
such model, the keypoint loss function is used. The loss function is based on
the Euclidean distance between predicted and actual keypoint positions. This
function assigns weights to each keypoint and normalizes them based on the
object’s scale, enhancing the model’s focus on discernible features. Finally, the
loss function Lpose is defined as follows:
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Lpose(s, i, j, k) = 1−

∑N
n=1 exp

(
− d2

n

2s2k2
n

)
δ(vn > 0)∑N

n=1 δ(vn > 0)
, (1)

where N represents the number of keypoints, dn denotes the Euclidean distance
between predicted and ground truth location for n-th keypoint, kn refers to the
specific weights assigned to each keypoint, and s indicates the scale of an object.
vn is the binary value of {0, 1} to represent visibility of each point. If the vn is
0, the point is not utilized in computing the loss value. i and j represent the
indices of keypoints and related data points. The δ is a indicator used to include
values in the calculation only when a specific condition (e.g., visibility) is true.

The keypoint’s confidence score is also trained based on the visibility of
keypoints: keypoints that are visible or occluded are assigned a confidence score
of 1, while keypoints outside the image or not present are assigned a score of 0.
The keypoint confidence loss Lconf is as follows:

Lconf = − 1

N

N∑
n=1

[vn · log(σ(cn)) + (1− vn) · log(1− σ(cn))], (2)

where cn represents the model output for each keypoint’s confidence value. σ
represents a sigmoid function.

2.3 Occlusion-Aware Loss

In this study, we propose a new loss function to enhance the performance of
keypoint prediction performance in YOLOv8. The loss function is an occlusion-
aware loss function Locc that utilizes a cross-entropy function, defined as follows:

Locc = − 1

N

N∑
n=1

3∑
c=1

tcn log(p
c
n), (3)

where tcn is c-th element of one-hot encoded vector of n-th keypoint. The value
represents our annotated visibility value of {0, 1, 2} already mentioned in Fig. 3.
This means that our occlusion-aware loss classifies into three categories. Thanks
to Locc, the network can learn whether the point is visible, occluded, or outside
the image. pcn denotes the output value produced by the YOLOv8 model. Finally,
we utilize total loss function Ltotal as follows:

Ltotal = αLpose + βLconf + γLocc, (4)

where α, β and γ are parameters to control the strength of each loss function.

3 Experiments

3.1 Implementation Details

All experiments in this study were implemented using the PyTorch framework
and conducted using four NVIDIA RTX A6000 GPUs. The total number of
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Table 1. Quantitative comparison between baseline models and our models.

Model RMSE
Visible Occluded Average

HRNet [15] 175.634 179.236 176.386
OTPose [16] 136.753 206.270 154.965

YOLOv8-n [2] 18.048 40.746 25.109
YOLOv8-s [2] 17.982 34.113 22.693
YOLOv8-m [2] 17.119 32.774 21.713
YOLOv8-l [2] 16.142 32.319 20.963
YOLOv8-x [2] 16.282 29.843 20.196

YOLOv8-n with Locc (ours) 18.031 33.821 22.63
YOLOv8-s with Locc (ours) 15.972 32.062 20.761
YOLOv8-m with Locc (ours) 16.172 32.606 21.092
YOLOv8-l with Locc (ours) 15.472 27.850 19.028
YOLOv8-x with Locc (ours) 16.533 31.878 21.045

epochs is 30, and the batch size is 128. For optimization, we used two different
optimizers: stochastic gradient descent (SGD) and AdamW. AdamW was utilized
for the first 10, 000 iterations, after which the optimizer was switched to SGD for
the remaining iterations. We set the parameters α, β, and γ as follows: α = 12,
β = 0, and γ = 1 (See Table 2 why we set β as 0.). We use LambdaLR as a
learning rate scheduler. The function is as follows:

λ(i) = (1− i

e
)× 0.99 + 0.01, (5)

where e and i are the total number of epochs and the current epoch number,
respectively.

In this study, two types of data augmentation techniques such as mosaic [13]
and mixup [14], were applied to effectively improve the generalization perfor-
mance of the model. Mosaic augmentation is a process that combines multiple
(e.g., four or nine) images into a single composite mosaic image. Mixup creates a
new image by overlaying two images while also blending their respective labels.

3.2 Experimental Results

Table 1 shows the evaluation results, in terms of RMSE. To observe the perfor-
mance under conditions where keypoints are clearly visible and when they are
occluded, we conducted experiments in two scenarios: Visible and Occluded.

Based on our experiments, the original YOLOv8 models demonstrated supe-
rior performance compared to other models, including HRNet [15] and OTPose
[16], which are representative models for human pose estimation tasks. We ex-
perimented with various sizes of YOLOv8 models, such as nano (n), small (s),
medium (m), large (l), and xlarge (x) models. The YOLOv8-x model achieved a
commendable performance of 20.196. In the case of our YOLOv8, we augmented
the original YOLOv8 with Locc, and observed an improvement in performance.
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Table 2. Performance comparison according to β and γ.

Model # of params β, γ
RMSE

Visible Occluded Average

YOLOv8-n 3.3M
0, 0 18.048 40.746 25.109
1, 1 18.136 ∇0.49% 39.759 ∆2.42% 24.80 ∆1.23%
0, 1 18.031 ∆0.09% 33.821 ∆17.00% 22.63 ∆9.87%

YOLOv8-s 11.6M
0, 0 17.982 34.113 22.693
1, 1 16.430 ∆8.63% 31.091 ∆8.86% 21.427 ∆5.58%
0, 1 15.972 ∆11.18% 32.062 ∆6.01% 20.761 ∆8.51%

YOLOv8-m 26.4M
0, 0 17.119 32.774 21.713
1, 1 16.773 ∆2.02% 30.773 ∆6.11% 20.788 ∆4.26%
0, 1 16.172 ∆5.53% 32.606 ∆0.51% 21.092 ∆2.86%

YOLOv8-l 44.4M
0, 0 16.142 32.319 20.963
1, 1 16.177 ∇0.22% 28.722 ∆11.13% 20.323 ∆3.05%
0, 1 15.472 ∆4.15% 27.850 ∆13.83% 19.028 ∆9.23%

YOLOv8-x 69.4M
0, 0 16.282 29.843 20.196
1, 1 16.558 ∇1.70% 29.463 ∆1.27% 20.241 ∇0.22%
0, 1 16.533 ∇1.54% 31.878 ∇6.82% 21.045 ∇4.20%

Particularly, there was a significant enhancement in the occluded scenario. On
average, our YOLOv8-m model achieved the best performance.

Fig. 4 presents qualitative results. Our method successfully identifies key-
points even in the presence of occlusion. This indicates that our occlusion-aware
loss function can aid in detecting keypoints effectively.

Table 3. Performance comparison according to γ.

γ
RMSE

Visible Occluded Average
0.25 16.452 33.238 21.463
0.5 16.248 30.131 20.292
1 15.472 27.850 19.028
2 16.273 32.082 20.960
3 15.750 31.189 20.334
4 16.702 33.266 21.625
5 17.547 38.509 24.008

Table 4. Occlusion classification
test of our YOLOv8 models.

Model Accuarcy
YOLOv8-n with Locc 93.269
YOLOv8-s with Locc 93.612
YOLOv8-m with Locc 93.763
YOLOv8-l with Locc 94.109
YOLOv8-x with Locc 94.340

3.3 Ablation Study

In this section, we conducted experiments to adjust the coefficients controlling
the strength of the loss and added tests to classify visibility, allowing us to verify
whether Locc was effectively learned. Table 2 compares the performance with and
without Lconf and Locc, corresponding to experiments conducted with different
combinations of β and γ being set to either 0 or 1. As indicated in the table, it
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Fig. 4. Qualitative results comparing the original and our YOLOv8 mod-
els. Two images in the first column represent the results extracted from the origi-
nal YOLOv8 model. The second column denotes the results based on our proposed
occlusion-aware loss. The red arrow represents enhancement compared to the original
YOLOv8 models.

was observed that overall performance mostly improved when both β and γ were
set to 1 compared to when they were both set to 0. However, the best results
were achieved when β was set to 0 and γ was set to 1 using the YOLOv8-l model.
This suggests that our proposed occlusion-aware loss function can indeed replace
the traditional confidence loss effectively.

Additionally, we explore the influence of γ by varying from 0.25 to 5. As shown
in Table 3, the best RMSE performance is achieved when γ = 1. Furthermore,
to verify whether the model was effectively trained with our occlusion-aware
loss, we examined the accuracy of occlusion classification. As shown in Table 4,
most models achieved high accuracies, exceeding 93%. This implies that our
models are capable of effectively discerning the occlusion status of keypoints. In
other words, the feature space learned by YOLOv8 can be considered to include
occlusion-aware features.
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4 Conclusion

In conclusion, we proposed a new occlusion-aware loss function for accurate
pose estimation of robotic surgical instruments. To achieve this, we constructed
a new private dataset from real gastric cancer surgery videos. This dataset was
specifically designed to capture the dynamic and unpredictable nature of surgical
environments. Experimental results demonstrated that our proposed loss func-
tion effectively replaces the traditional confidence loss and that our YOLOv8
model performs exceptionally well in various scenarios, particularly in the pres-
ence of occlusion. These findings suggest that our model can effectively recognize
the occlusion status of keypoints, opening up new possibilities for precise pose
estimation in robotic-assisted surgery.
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