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Abstract. Structural magnetic resonance imaging characterizes the mor-
phology and anatomical features of the brain and has been widely uti-
lized in the diagnosis of developmental disorders. Given the dynamic
nature of developmental disorder progression with age, existing methods
for disease detection have incorporated age as either prior knowledge
to be integrated or as a confounding factor to be disentangled through
supervised learning. However, the excessive focus on age information in
these methods restricts their capability to unearth disease-related fea-
tures, thereby affecting the subsequent disease detection performance.
To address this issue, this work introduces a novel weakly supervised
learning-based method, namely, the Weakly Supervised Spherical Age
Disentanglement Network (WSSADN). WSSADN innovatively combines
an attention-based disentangler with the Conditional Generative Adver-
sarial Network (CGAN) to remove normal developmental information
from the brain representation of the patient with developmental disorder
in a weakly supervised manner. By reducing the focus on age information
during the disentanglement process, the effectiveness of the extracted
disease-related features is enhanced, thereby increasing the accuracy of
downstream disease identification. Moreover, to ensure effective conver-
gence of the disentanglement and age information learning modules, we
design a consistency regularization loss to align the age-related features
generated by the disentangler and CGAN. We evaluated our method on
three different tasks, including the detection of preterm neonates, in-
fants with congenital heart disease, and autism spectrum disorders. The
experimental results demonstrate that our method significantly outper-
forms existing state-of-the-art methods across all tasks. The codes will be
publicly available in https://github.com/xuepengcheng1231/WSSADN.

Keywords: Developmental disorder · Weakly supervised learning · Dis-
entanglement · Conditional Generative Adversarial Network.
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1 Introduction

Structural magnetic resonance imaging (sMRI) provides detailed patterns of
brain morphology and anatomical features, leading to its widespread application
in the study of developmental disorders caused by diverse factors, such as preterm
birth and cardiac diseases, etc [15,24,14,22]. Recently, sMRI-based deep learning
methods, due to their powerful representation learning capabilities, have been
proposed to extract discriminative features from imaging data for brain disorder
diagnosis [18,23].

Compared to the common brain disorder, developmental disorder detection is
more challenging, due to the complex and dynamic evolution of the brain’s struc-
ture throughout the developmental process, especially in early stages [20,7,2,8].
As indicated by relevant studies, patients with developmental disorders such as
autism spectrum disorder (ASD) [20,7] and congenital heart disease (CHD) [21]
exhibit brain structural changes influenced not only by normal developmental
processes but also significantly by the pathological processes. However, these
two kinds of processes are closely intertwined with age, presenting a dynamic
complexity that evolves over age. This complexity undoubtedly increases the dif-
ficulty of accurately extracting disease-specific brain changes (i.e., discriminative
features) from the multitude of changes. Moreover, given the dynamic nature of
diseases, diagnostic models developed for one age group may not be applicable
to other age groups. To tackle these problems, existing studies mainly utilized
two strategies: 1) Fusion-based methods, incorporating age as prior knowledge
into the model to enhance the diagnosis; and 2) Disentangling-based methods,
removing age-related normal development from brain representation to extract
brain developmental deviations only induced by the disorders.

Although these methods have achieved certain success, they still have obvious
limitations. Fusion-based methods, attempting to enhance diagnostic accuracy
by incorporating age information as an extra input, fail to effectively extract
disease-specific characteristics, thereby impacting the potential interpretability
of the analysis results [1,19]. To tackle this challenge, researchers have employed
a disentangling-based approach, usually utilizing a supervised learning-based age
predictor to learn age information and employing disentanglement techniques to
eliminate age-related normal development from brain representation [12,4,28].
However, the supervised learning approach might overly prioritize extracting age-
related information, particularly for a continuous variable like age. Consequently,
this excessive focus could interfere with the extraction of disease-related features.

To overcome these challenges, we developed the Weakly Supervised Spheri-
cal Age Disentanglement Network (WSSADN). This method employs a weakly
supervised learning strategy, rather than a supervised learning strategy, to effec-
tively remove representations related to normal development from brain repre-
sentation, so that this approach can extract more accurate disease-induced brain
changes, thereby enhancing the performance of developmental disorder diagno-
sis. Specifically, we incorporate a Conditional Generative Adversarial Network
[16][3](CGAN)-based age information generator, namely the Weakly Supervised
Age Information Learning module, into an attention-based disentangler. This
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setup utilizes age-related embeddings generated by the CGAN to steer the opti-
mization of the disentangler. By diminishing the focus on age learning in a weakly
supervised manner, we enhance the identification capabilities of disease-related
features. Furthermore, we design a consistency regularization loss to align the
age-related representations generated by the disentangler and CGAN, ensuring
the effective convergence of the disentanglement process. The main contributions
of our work can be summarized as follows:

– We propose a weakly supervised disentanglement-based brain representa-
tion learning method, which can effectively remove normal developmental
information from the brain features of patients with developmental disor-
ders. By retaining only disease-related features, the diagnosis accuracy can
be significantly improved.

– We introduce a consistency regularization loss, a crucial component that
guarantees the effective operation of the disentanglement module. This mech-
anism is specifically engineered to prevent trivial solutions, ensuring the in-
tegrity and reliability of the extracted features.

– Our extensive experimental evaluation confirms the superior performance of
our method in accurately diagnosing developmental disorders at various age
stages, underscoring its effectiveness and potential for widespread applica-
tions in the clinic.

Fig. 1. Overview of our proposed method, consisting of three components: (a) Surface-
based encoder En to extract cortical features; (b) Attention-based disentanglement
(ADT) for disentangling the cortical features into age-related and disorder-related cat-
egories; (c) Weakly supervised age information learning (WSAL) based on CGAN for
guiding the age-related embedding learning in ADT module. Nk denotes the number
of vertices in the spherical feature maps.
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2 Method

2.1 Network Architecture

The architecture of our proposed method is shown in Fig. 1, which comprises
of three modules. The first module is the surface-based encoder for extracting
cortical features from three different cortical mesh data. The second module is
Attention-based DisenTanglement (ADT) to decompose the extracted cortical
features into disease-related and age-related embeddings. The third module is
Weakly Supervised Age information Learning (WSAL), designed to guide the
optimization of the ADT module.

Surface-based Spherical Encoder Given the uniform spherical structure of
the cortical surface derived from an icosahedron, we developed a surface-based
encoder using spherical convolution [29] to capture spatially fine-grained infor-
mation by exploiting its intrinsic spherical topology. The encoder, denoted as
En and implemented as Spherical Res-Net [11,29], incorporates a sequence of
spherical convolution and spherical pooling layers to extract spatial patterns
from a set of surface maps with cortical properties. Ultimately, the latent vari-
ables zi ∈ R162∗M capture mixed features (such as mean cortical thickness, mean
curvature, and convexity) of the input cortical surface xi ∈ R10242∗3, where M
denotes the number of channels and 162 and 10242 are the number of vertices.

Attention-based Disentanglement. Considering the developmental biases
inherent in developmental disorders, it becomes imperative to eliminate age-
related information from brain structural data to further generate purer disorder-
related representations. To achieve this goal, we introduced the ADT module
as the disentangler (Dis) to decompose the latent variables zi into age-related
representation Ai and disorder-related representation Ii. To be specific, the ADT
module consists of channel attention and spatial attention [13,26]. The age-
related and disorder-related representations are defined as Ai = zi ⊙ (1−ψ(zi))
and Ii = zi ⊙ ψ(zi), respectively. Herein, the operation ⊙ denotes element-wise
multiplication, and ψ indicates the attention module aforementioned. Finally,
we employed a 1-D convolution fc to fuse information from all channels and
respectively map Ai and Ii to the latent variables z̃i

l, z̃i
r ∈ R162∗1 (l represents

the left hemisphere, r represents the right hemisphere).

Weakly Supervised Age Information Learning To guide the learning of
disentangled age-related representation without compromising the diagnostic ca-
pacity, we designed a new age information learning method based on CGAN
[16][3], namely the WSAL module. In contrast to conventional age information
learning methods that rely on age predictors, WSAL employs imprecise age rep-
resentations generated by CGAN as labels, which is proposed weakly supervised
method. This technique guides the disentanglement process (i.e., optimization of
the ADT module) in a weakly supervised manner, aiming to mitigate the model’s
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excessive emphasis on age. Specifically, as shown in Fig. 1, WSAL consists of a
generator (G) and a discriminator (D). The G is used for generating age-related
representation AG

i with the subject’s age a and Gaussian noise z as input. The
generated AG

i is used for guiding the disentanglement of age-related representa-

tion Ãi in the ADT module. The discriminator D is designed for distinguishing
the AG

i from G in WSAL module and Ãi from ADT module. Based on the dis-
criminative capability of D, the distribution P (G(z, a)) gradually approximates

the real distribution P (Ãi) to maximize the mutual information boundary be-

tween AG
i and the disentangled representation Ãi by optimizing the following

loss:

min
G

max
D

Ladv = Ex∼P
Ãi
[logD(x)] + Ez∼Pnoise [1− log(D(G(z, a)))] (1)

To retain age information to the greatest extent when generating age repre-
sentations, we further employed a Q network to predict age from AG

i , where the
Q network shares parameters with D except for the last layer. The objective is
achieved by minimizing LWSAL, implemented as L2 norm:

min
G,Q

LWSAL = 1/B
B∑
i=1

(Q(AG
i )− a)2 (2)

where B is batch size.

Consistency Regularization Although we attempt to achieve the alignment
between disentangled and generated age-related representation through discrim-
inator D, the prerequisite is that the discriminator D should possess superior
discriminative capacity, which mandates multiple iterations in the model training
process and is prone to yielding trivial solutions. Therefore, to ensure effective
convergence and prevent ineffective solutions during the disentanglement, we de-
signed a consistency regularization (CR) constraint. We adopted the L2 norm
to reinforce the consistency between the disentangled and generated age-related
latent embedding by minimizing the following loss:

min
Dis

LCR = 1/B
B∑
i=1

(AG
i − Ãi)

2 (3)

Loss Function In our work, we adopt a simple Multi-layer Perceptron (MLP)
as the final classifier. We adopt binary cross-entropy as the classification loss,
denoted as LC . To ensure that the generator G produces representations approx-
imating the real distribution, it is imperative to train G based on the discrimi-
native capability of the discriminator D. Consequently, we decompose equation
(1) into two parts, LD and LG, constituting an adversarial game.

Our proposed model adopts an end-to-end iterative training approach. Firstly,
we optimize all module parameters through the LGlobal loss function, formu-
lated as: LGlobal = LC + λ1 ∗ LD + λ2 ∗ LWSAL. Subsequently, we optimize the
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parameters of G and Dis by optimizing the LG,Dis, formulated as: LG,Dis =
LCR +λ3 ∗LG. The λ1, λ2, λ3 are employed to adjust the relative significance of
each loss term.

3 Experiments and Results

3.1 Datasets

To validate the effectiveness of the proposed method, experiments were con-
ducted on three different datasets, including the third release of the Developing
Human Connectome Project (DHCP), an in-house collected dataset of CHD
infants which has received ethical approval and Autism Brain Imaging Data
Exchange (ABIDE I). The DHCP dataset encompasses 281 preterm and 514
full-term neonates with ages ranging from 26 to 45 weeks. The CHD dataset
includes 96 CHD infants and 101 age-matched healthy controls from Children’s
hospital of Nanjing Medical University, with their ages varying from 10 to 72
months. The ABIDE I dataset consists of 489 patients with ASD and 509 age-
matched healthy controls, covering an age range from 6 to 64 years. All three
datasets were downsampled to 10,242 vertices, and each vertex has three corti-
cal morphological attributes, including cortical thickness, mean curvature, and
convexity. The 5-fold cross-validation strategy was employed.

3.2 Experiments Setup

In this work, all methods were implemented using PyTorch, utilizing the Adam
optimizer with a weight decay of 1e-5. A cosine decay strategy was applied
for learning rate scheduling during training, with an initial learning rate set at
0.001. The batch size was set to 40. The maximum training epochs were set to
200. Based on the parameter analysis experiments (see Fig. 1 in appendix), the
hyperparameters λ1, λ2, and λ3 were set to 0.1, 0.001, and 10, respectively. We
employed accuracy and AUC as evaluation metrics in disease diagnosis tasks and
used mean square error for evaluating age prediction accuracy.

3.3 Experimental Results

Comparison with SOTA Methods. We compared the proposed method with
four SOTA methods, including one method without considering age information
(i.e., NeuroExplainer, NE [27]), two age-fusion-based methods (i.e., Spherical
Multi-task CNN, SMTCNN [10] and Spherical CNN++, SCNN++ [10]), and one
age-disentangling-based method (i.e., Spherical Disentanglement CNN, SDCNN
[28]). These methods follow the same optimizer settings and training epochs as
our method.

As shown in Table 1, our proposed method outperforms the SOTA meth-
ods in all experimental tasks, validating the effectiveness of weakly supervised
age learning in enhancing the learning of disease-specific features. Firstly, in-
corporating age factors resulted in an average improvement of 1% in diagnostic
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Table 1. Comparison results of disease diagnosis accuracy on three different datasets.

Methods
DHCP CHD ABIDE I

ACC AUC ACC AUC ACC AUC

NE∗ 0.894±0.02 0.946±0.02 0.776±0.04 0.75±0.03 0.593±0.02 0.57±0.02

SCNN++† - - 0.781±0.03 0.719±0.06 0.605±0.01 0.564±0.02

SMTCNN† 0.916±0.02 0.935±0.02 0.782±0.03 0.76±0.04 0.598±0.01 0.584±0.03

SDCNN‡ 0.925±0.01 0.932±0.03 0.79±0.07 0.76±0.10 0.613±0.02 0.58±0.01
Ours 0.940±0.02 0.965±0.02 0.826±0.06 0.82±0.06 0.624±0.02 0.628±0.01

∗ represents methods ignoring the age information. † represents fusion-based
methods. ‡ represents disentangling-based methods with supervised learning.

performance compared to age-agnostic strategies, underscoring the superiority
of considering age information in the diagnosis of developmental disorders. Sec-
ondly, through a comprehensive comparison of three age-handling approaches,
we found that weakly supervised disentanglement learning performed the best.
It exhibited an average improvement of 1.7% over supervised disentanglement
learning on the three datasets and an average improvement of 3.3% over fusion-
based methods. This finding once again confirms that an excessive focus on age
information may not be conducive to the effective capture of disease-related
features by the model.

Ablation Study. To demonstrate the necessity of each component within our
proposed method, we separately removed the WSAL and CR modules from
WSSADN, constructing two baseline methods: w/o WSAL and w/o CR, with
the results displayed in Table 2. We observe that: 1) Methods without the WSAL
or CR modules exhibit significantly lower classification accuracy compared to
the complete WSSADN model; 2) our proposed method, which includes the CR
module, shows higher accuracy than the model without it (i.e., w/o CR). These
findings effectively validate the importance of incorporating both the WSAL and
CR modules into our method to enhance its diagnostic performance.

Comparison between Supervised and Weakly Supervised Learning. To
assess the effect of minimizing age information focus on disease feature recog-
nition, we compared SDCNN, a supervised learning method, with our weakly

Table 2. Comparison results of ablation study on three different datasets.

Methods
DHCP CHD ABIDE I

ACC AUC ACC AUC ACC AUC

w/o WSAL 0.907±0.01 0.946±0.01 0.795±0.03 0.868±0.04 0.6±0.02 0.617±0.03
w/o CR 0.92±0.06 0.946±0.05 0.802±0.08 0.815±0.09 0.623±0.04 0.608±0.04
ours 0.94±0.02 0.965±0.02 0.826±0.06 0.82±0.06 0.624±0.02 0.628±0.01
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Table 3. Comparative results between supervised and weakly supervised learning
methods in age prediction accuracy and disease diagnostic accuracy.

Methods
DHCP (week) CHD (month) ABIDE I (year)

MSE Accuracy MSE Accuracy MSE Accuracy

SDCNN 34.2±23.4 0.925±0.01 61.0±7.9 0.79±0.07 67.3±52.5 0.613±0.02
w/o CR 74.2±19.1 0.92±0.06 176.6±103.6 0.802±0.08 314.4±200.3 0.623±0.04
ours 53.3±18.2 0.94±0.02 69.2±12.4 0.826±0.06 88.4±14.85 0.624±0.02

supervised approach in terms of age prediction and disease diagnosis accuracy.
Additionally, a baseline model without the CR module (w/o CR) was intro-
duced to evaluate the impact of the proposed CR loss on age prediction. The
results summarized in Table 3 indicate that while SDCNN achieves the highest
age prediction accuracy, it exhibits the lowest diagnostic accuracy, supporting
our hypothesis that reducing age information focus improves diagnostic accu-
racy. Furthermore, our final method, WSSADN, demonstrates a decrease in age
prediction accuracy compared to w/o CR, indicating the effectiveness of CR loss
in promoting convergence during disentanglement.

Contribution of Brain Regions. Given the convolution block fc fuses the
multi-level properties of cortical surface, we explored the gradient weights of
disorder-related representation produced by fc to generate the active maps
through Grad-CAM. The results are shown in Fig. 2. We observe that the distri-
bution of brain regions with significant contributions varies greatly among the
three developmental disorders. Specifically, preterm neonates primarily involve
the rostral middle frontal, superior temporal, fusiform, and lateral occipital ar-
eas, consistent with previous studies [17]. CHD is concentrated in the inferior
parietal, cingulate, and temporal areas, consistent with [5][6]. ASD focuses on
the medial frontal, precentral, postcentral, superior temporal, and paracentral
areas. The results are in line with the reports in related to studies to some extent
[9][25]. Furthermore, we also note areas of overlap across all three diseases, such

Fig. 2. Heatmaps of the brain regions’ contributions in classification tasks on three
different developmental disorders.
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as the superior temporal lobe, which plays a significant role in the classification
of each condition. This suggests commonalities between the diseases, meriting
further investigation in the future.

4 Conclusion

In this paper, we proposed a Spherical Weakly Supervised Age Disentangle-
ment Network to improve the diagnostic performance of developmental disor-
ders by eliminating the developmental biases in disease-related feature learning
in a weakly supervised manner. Evaluated on three benchmark datasets, the
proposed method consistently achieves superior performance in developmental
disorder diagnosis at various age stages. Our approach introduces an innovative
design strategy for the detection of developmental disorders, paving the way for
advancements in diagnostic methodologies.
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