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Abstract. Survival analysis stands as a pivotal process in cancer treat-
ment research, crucial for predicting patient survival rates accurately.
Recent advancements in data collection techniques have paved the way
for enhancing survival predictions by integrating information from mul-
tiple modalities. However, real-world scenarios often present challenges
with incomplete data, particularly when dealing with censored survival
labels. Prior works have addressed missing modalities but have over-
looked incomplete labels, which can introduce bias and limit model ef-
ficacy. To bridge this gap, we introduce a novel framework that simul-
taneously handles incomplete data across modalities and censored sur-
vival labels. Our approach employs advanced foundation models to en-
code individual modalities and align them into a universal representation
space for seamless fusion. By generating pseudo labels and incorporating
uncertainty, we significantly enhance predictive accuracy. The proposed
method demonstrates outstanding prediction accuracy in two survival
analysis tasks on both employed datasets. This innovative approach over-
comes limitations associated with disparate modalities and improves the
feasibility of comprehensive survival analysis using multiple large foun-
dation models.
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1 Introduction

Survival analysis is a vital process in cancer treatment research, enabling the pre-
diction of important outcomes such as patient survival rates [21,1,3,4,18]. Recent
advancements [16,11] in data collection techniques have opened new avenues for
improving the accuracy of survival predictions by leveraging information from
multiple modalities. An accurate prediction of the survival rate and time could
primarily facilitate the precise composition of treatment planning.

The fusion of information from multiple modalities has been the recent trend
of research in survival analysis. By leveraging cutting-edge techniques (e.g., cross-
attention [20] and co-attention [2]) from the field of vision and language, it is
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Fig. 1. Overview of the problem definition. (A) Employing multi-modal vision and
textual data for patient-wise survival analysis. (B) Missing modality issues during
training and testing. (C) Missing accurate label issues for censored patients.

popular to jointly train a model with two data modalities, e.g., pathology images
and genomics. Nonetheless, these methods often require high data integrity and
are constrained by limitations involving more than two modalities, as shown
in Fig. 1 A and B. Moreover, in real-world survival analysis, it is typical to
encounter a significant proportion of right-censored data, where the event of
interest has not occurred or remains unknown by the end of the follow-up period,
as is defined as missing accurate label issues shown in Fig. 1 C.

To address this challenge, previous works first tackle the incompleteness of
input data in multi-modal survival analysis. These methods [5,8] focus on syn-
thesizing the missing modalities, leveraging statistical techniques and generative
model-based reconstruction algorithms to estimate the missing values. By filling
in the missing information, these approaches strive to ensure that the analysis is
conducted on as complete information as possible. Nonetheless, they still over-
look the equally important issue of incomplete labels, which may introduce bias
and limit the training efficacy of survival models. There is an urgent need for
innovative approaches that account for both incomplete modalities and labels.

In this work, we demonstrate a joint framework that revolutionizes survival
analysis by handling incomplete data across modalities and censored survival
labels together. First, we take advantage of the current availability of advanced
foundation models capable of encoding individual modalities. Then, the com-
puted multi-modal embeddings are bound into a universal representation space
via multi-modal feature alignment, paving the way for a seamless fusion of di-
verse modalities in a missing modality setting. Unlike previous methods, our
method goes beyond merely handling missing modalities, instead addressing the
formidable challenge of incomplete survival labels. By generating pseudo labels
and incorporating uncertainty in the training of censored data, we significantly
improve the predictive accuracy of survival prediction. This innovative approach
eliminates the limitations associated with disparate modalities and enhances the
feasibility of conducting comprehensive survival analysis. Crucially, our method
also allows for clear interpretability of each modality’s importance via an explicit
attention mechanism.
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Fig. 2. (A) Overview of the proposed framework. Solid lines: constant modalities;
dashed lines: potentially missing modalities. (B) Diagram of Patient-wise Contrastive
Alignment Learning. (C) Diagram of Progressive Survival Disambiguation Learning.

The contribution of the proposed multi-modal survival analysis framework is
three-fold: 1) We proposed a multi-modal survival analysis framework by consid-
ering the incompleteness in both the input data and label; 2) we utilize a variety
of foundation models to encode each modality and bind them into aligned rep-
resentations for a more generalizable means of multi-modal data fusion; 3) We
demonstrate outstanding prediction accuracy in two survival tasks across two
real clinical datasets.

2 Method

The overall training framework is shown in Fig. 2. A. We first categorize all
modalities into four types: radiology images, pathology Whole Slide Images
(WSIs), pathology reports, and other clinical notes. Then, we utilize pre-trained
modality-specific Foundation Models (FMs) to extract features from each modal-
ity separately (see Sec. 2.1); next, we introduce attention-based multi-instance
feature aggregation for both intra-modality and inter-modality (see Sec. 2.2). To
learn a single joint embedding space that encompasses patient-specific modal-
ities, we propose a Patient-wise Contrastive Alignment Learning based on the
Adapter and Contrastive Learning techniques (see Sec. 2.3). Finally, we introduce
Progressive Survival Disambiguation Learning to address the issue of estimat-
ing unknown interval risks for censored patients (see Sec. 2.4). The overall loss
function of the framework is defined as L = λLcon +Lsurv , where Lcon denotes
the contrastive loss (see Sec. 2.3), Lsurv denotes the survival loss (see Sec. 2.4),
and λ denotes the balancing weight coefficient.
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2.1 Encoding Modalities with Modality-specific Foundation Models

Multi-modal Input Data: This paper includes a variety of important modal-
ities for survival analysis of colorectal cancer patients, which are: (1) pathology
WSIs; (2) radiology images such as CT or MRI; (3) pathology reports: descrip-
tions of tumors regarding the patient’s pathology slides, including tumor lo-
cation, shape and size, grading, infiltration, invasion, and the status of major
genetic targets; (4) radiology reports: descriptions of tumors corresponding to
the patient’s radiology images; (5) clinical history; (6) colonoscopy reports. All
patients have at least one WSI and a corresponding pathology report, while the
presence of other modalities can vary with certain incompleteness.

A single general FM may not be adequate for comprehensive encoding all
modalities due to the diversity in format and content. For instances, FMs trained
predominantly on natural image datasets fall short in accurately interpreting
radiologic anatomical structures. Models trained on pathological images may
not grasp the nuances of radiological anatomy. To overcome these limitations,
we leverage modality-specific FMs, enhancing encoding precision.

Pathology Images and Reports: PLIP [9] is applied to extract visual features
from WSIs and textual features from pathology reports. Each WSI, after back-
ground removal, is divided into nW patches of 224×224 at 10x magnification.
PLIP’s Image Encoder outputs a 1×512 visual feature vector for each patch and
together forms a set sized nW×512. The patch count per WSI can vary, and for
individuals with multiple WSIs, the vectors are concatenated to form an exten-
sive WSI feature set FW

i ∈ RNW
i ×512, where NW

i is the total patch count from
all WSIs of patient i. Pathology reports are segmented into sections by keywords
(avoiding length limit of FM) and each section is encoded into a 1×512 vector by
PLIP’s Text Encoder, creating a feature set FP

i ∈ RNP
i ×512, with NP

i represent-
ing the section count, which varies by patient. These keywords used to segment
the reports were provided by pathologists through structured text report data,
including tumor location, size, grading, etc.

Radiology Images: For 3D radiology images (CT or MRI), the pre-trained
MedSAM-3D [12] is utilized. Initially, each image is segmented into nR 3D
patches of size 128×128×128 via sliding window. Subsequently, MedSAM-3D
maps these patches to 1×512 feature vectors, as an array with dimensions of
nR×512. For individuals with variable number of images, feature vectors are
concatenated into an array FR

i ∈ RNR
i ×512, where NR

i denotes the aggregate
number of 3D patches from all radiographic images for patient i.

Other Clinical Notes: The pre-trained BioLinkBERT-large [19] is employed
to tokenize and encode other clinical notes, including radiology reports, medical
history, and colonoscopy reports. These textual data are segmented by keywords
and encoded into feature vectors. Embeddings from multiple reports are concate-
nated to form a comprehensive feature set FB

i ∈ RNB
i ×1024, with NB

i indicating
the total segment count across all clinical notes for a patient.
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2.2 Attention-based Intra-modality and Inter-modality
Multi-instance Aggregation

In multi-modal analysis, the challenges include (1) the potential absence of mul-
tiple modalities during both training and testing, (2) the variable number of
feature vectors within each modality, and (3) the necessity to quantify the im-
portance of intra-modal and inter-modal factors on outcomes. Innovatively, we
address these issues by unifying the aggregation of intra-modal and inter-modal
features into a problem of multi-instance aggregation based on the attention
mechanism, offering a flexible and efficient solution.
Intra-modality Aggregation: We aggregate the patient-wise feature vector
sets extracted from radiology, pathology, and other medical notes into a uniform-
dimensional feature vector, respectively. Specifically, we take the feature vector
set of radiology data FR

i,j as an example, where the instances being aggregated
are the feature vectors extracted from each 3D patch.

ZR
i =

NR
i∑

j=1

aR
i,jF

R
i,j , aR

i,j =
exp

{
w⊤ tanh

(
V FR⊤

i,j

)}
∑NR

i
j=1 exp

{
w⊤ tanh

(
V FR⊤

i,j

)} (1)

where aRi,j is the attention score predicted by the self-attention network with
learnable parameters w and V , reflecting each instance’s contribution during
aggregation [10]. Its flexibility is demonstrated by the fact that the number of
instances per patient input does not need to be strictly equal. Ultimately, we ob-
tain the attention aggregated imaging features ZR

i , pathology WSI features Wi,
pathology report features Pi, and other medical report features ZB

i , respectively.
Inter-modality Aggregation: All modal features of a patient are aggregated
into a single-dimensional feature vector. Given that a patient’s modal quantity
varies, we first concatenate all modal features together to form the modal feature
vector set FM

i . Then, we aggregate FM
i in the same manner as described in Eq. 1,

resulting in the final patient-level feature vector ZM
i ∈ R1×256.

2.3 Patient-wise Contrastive Alignment Learning

We aim to create a unified joint embedding space for all modalities, facilitat-
ing more distinctive representations and the alignment of features from different
modalities. It can also suppress the challenge of missing modalities when per-
forming inter-modality aggregation. Nonetheless, we face the challenge of enforc-
ing the alignment of multiple modalities.

This work utilizes pathology images and corresponding reports (encoded and
aligned using the pre-trained PLIP model) as the hub. The strategy segregates
the contrastive learning process into separate image and text sides, i.e., aligning
embeddings of other visual modalities with pathology images and other tex-
tual modalities with pathology reports. The InfoNCE Loss [14] which compares
the similarity of samples and encourages the model to identify positive samples
among the negatives is applied for each alignment. Due to the issue of missing
modalities for each patient and the varying number of instances within each
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modality, it results in a batch size of one (patient) during specific training ses-
sions. Inspired by MOCO [7], Memory Queues have been constructed on both
the image and text sides to provide a substantial number of negative samples,
as shown in Fig. 2.B.

Specifically, we first import the paired radiology image and pathology WSI
of M patients as the initial memory queue, denoted as Queueimg; and the paired
pathological report data and other medical report data as the initial Queuetext.
Samples in the memory queue will be popped out as the inter-patient nega-
tive samples for contrastive learning and refilled whenever new patient data are
processed for training.

The process of contrastive learning on both the image and text sides is similar.
Here, we take the image side as an example. First, we use an Adapter (two-
layer Fully-connected layer [6]) to map the image features ZR

i after attention
aggregation, obtaining features Ri. Then, the current patient’s WSI features Wi

and Ri (as a pair) are added to Queueimg, and one patient’s feature pair in
the queue is discarded. Next, for all feature pairs (W,R) in Queueimg, with the
current patient’s Wi and Ri as the positives and other combinations as negatives,
we can compute the InfoNCE Loss LW,R. Similarly, we use an Adapter to map
the features ZB

i of other medical reports after attended aggregation, obtaining
features Bi. Then, based on (P,B), we construct LP,B .

The overall form of the contrastive loss is defined as Lcon = LW,R+λconLP,B ,
where λcon is a balancing coefficient determined by the ratio of the number of
complete feature pairs (W,R) and (P,B) among all patients.

2.4 Progressive Survival Disambiguation Learning

Survival analysis is challenging because it involves ordinal regression to model
time-to-event (e.g., death) data, with some events potentially not observed (right-
censored). Following [2,20], we divided survival times of uncensored patients into
set intervals (e.g., {0,1,2,3}) as discrete labels for all patients, forming a maxi-
mum likelihood loss from these labels. A two-layer Prediction Layer is added to
regress the death hazard and survival probability for each interval. For uncen-
sored patients with accurate labels, we maximize their risk of death and minimize
their survival probability in the actual discrete interval of death. For censored
patients without accurate labels, previous works [2,20,8] could only maximize
survival probability in the current interval while neglecting their hazard loss.

Therefore, we propose Progressive Survival Disambiguation Learning to ad-
dress this challenge by estimating unknown interval hazards for censored patients
during training. Specifically, we first use the Prediction Layer to predict risks
for each interval and then use censored time to retain the hazards for subse-
quent intervals while setting the hazards for earlier intervals to zero. Softmax
is applied to normalize these predictions, and they are then used to weight the
ground-truth label to form the soft labels for training. See Fig. 2.C. for an ex-
ample. Considering the network’s limited predictive capability at the beginning
of training, we further employ a time-dependent Gaussian warming up func-
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tion [13], λpro (t) = 0.1 · e

(
−5

(
1− ti

ttotal

)2
)
, to weight on these pseudo labels

increasingly. Here, ti and ttotal denote the current and total iterations.
The survival loss is defined as Lsurv = Luncen+λcen

(
Lcen + λpro(t)Lcen_p

)
,

where Luncen, Lcen, and Lcen_p, which represent the loss for uncensored patients,
censored patients, and the proposed risk probability estimation loss for censored
patients, respectively. λcen is the weight coefficient for the overall loss of censored
patients.

3 Experiments

3.1 Datasets and Tasks

We assessed our algorithm’s performance through two real-world in-house datasets,
each partitioned into training and test sets on a per-patient basis for five-fold
cross-validation, with mean outcomes reported. Notably, all patients have WSIs
and pathology reports, while radiology data and additional clinical notes are
intermittently absent. Dataset 1 contains 367 patients, of which 180 are with
radiology images, 303 medical history reports, 205 colonoscopy reports, and 89
radiology reports. Dataset 2 includes 193 patients, with 133 having radiology
images, 181 with medical history reports, 154 with colonoscopy reports, and
129 with radiology reports. In both, we assessed two important prognosis tasks:
overall survival (OS) prediction and disease-free survival (DFS) prediction.

3.2 Evaluation Metrics and Compared Methods

The evaluation of our model employed three metrics. Firstly, the Concordance
Index (CI) served as the primary metric, quantifying the proportion of patient
pairs whose survival risks are accurately ranked. CI values span from 0 to 1,
with higher values indicating superior model performance. Secondly, the Brier
Score (BS) assessed prediction accuracy, calculating the mean squared difference
between observed survival statuses and predicted probabilities, where a BS of
0 represents optimal accuracy. Lastly, Kaplan-Meier (KM) analysis determined
patient stratification efficacy by dividing patients into high-risk and low-risk
groups based on the median prediction model scores for each cohort. Superior
stratification is reflected by lower p-values in the Logrank test.

Given that our data are real clinical data with multimodal missing situations
in both training and testing, we primarily compared against the current SOTA
multimodal algorithms for missing modalities, including MMD [5], HGCN [8],
and ShaSpec [17]. To ensure a fair comparison, we used the same FMs to extract
features for different modalities and maintained exactly the same data division.

3.3 Results

As shown in Table 1, the performance of our algorithm significantly surpasses
all comparison algorithms across all tasks in all datasets, indicating the high
efficiency of our algorithm.
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Table 1. Performance comparison on the two tasks across the two datasets.

Dataset Dataset 1 Dataset 2
Task OS DFS OS DFS

Method CI ↑ BS ↓ CI ↑ BS ↓ CI ↑ BS ↓ CI ↑ BS ↓
MMD (MICCAI’22) 0.877 0.108 0.888 0.104 0.893 0.102 0.884 0.105

HGCN (TMI’23) 0.882 0.105 0.891 0.101 0.899 0.101 0.891 0.102
ShaSpec (CVPR’23) 0.889 0.104 0.896 0.100 0.905 0.098 0.899 0.097

Ours 0.897 0.100 0.905 0.095 0.914 0.083 0.907 0.091

Table 2. Results of ablation studies.

Method CI ↑ BS ↓
Baseline 0.871 0.109
w/o Lcon 0.884 0.105

w/o Lcen_p 0.887 0.104
Ours 0.897 0.100

Method CI ↑ BS ↓
WSI 0.856 1.116
Prep 0.842 1.119

WSI&Prep 0.865 1.111
Ours 0.897 0.100

Method CI ↑ BS ↓
PLIP 0.889 0.104
CLIP 0.885 0.105
Ours 0.897 0.100

0.19

0.40

0.23
0.17

0.34

0.24

0.42

Missing
Missing

0.53
0.47

A B C

— Low-risk group
— High-risk group
P-Value: 3.13e-8

— Low-risk group
— High-risk group
P-Value: 4.71e-12

Fig. 3. The KM analysis curves for (A) OS prediction task and (B) DFS prediction
task. (C) the visualization of modal attention scores for three patients.

We further divided the test cohort of Dataset 1 into high-risk and low-risk
groups based on the median risk score predicted by our model. If our model’s
predictions are efficient, then there should be a significant difference between the
KM curves of these two groups. The results, as shown in Fig. 3.A (OS prediction
task) and Fig. 3.B (DFS prediction task), reveal that the p-values for both groups
are less than 1e-7, indicating the significant efficacy of our method.

Our method also possesses strong clinical interpretability, allowing for the
flexible quantification of the importance of each modality engaged by the test
patients toward the outcomes. Fig. 3.C illustrates the visualization of modal
attention scores for three typical patients, demonstrating our method’s robust
and flexible interpretative advantage in clinical applications.
Ablation Study: In our detailed ablation studies for the Overall Survival (OS)
prediction task using Dataset 1, we explored three different aspects, with results
presented in Table 2. First, we conducted ablation experiments on the proposed
contrastive learning loss Lcon, and the loss Lcen_p tailored for censored data.
The baseline represents scenarios without any contrastive learning or disam-
biguation learning, highlighting the effectiveness of these two key components
we introduced. Second, we performed ablation experiments with pathology WSIs
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(WSI) only, pathology reports (Prep) only, and both, demonstrating that the
joint learning of multiple modalities can effectively enhance performance. Third,
we compared the performance of using a single vision-language large model, ei-
ther PLIP [9] or CLIP [15], for all tasks. The results indicated that using a
specialized medical large model for each modality can improve performance.

4 Conclusion

Our paper presents a novel multi-modal survival analysis framework tailored to
address critical challenges in cancer treatment research, including incomplete
data and censored survival labels. It represents a significant advancement in
leveraging multi-modal data and overcoming critical challenges for precise sur-
vival predictions in cancer treatment research. Future research avenues include
exploring application and validation in large-scale multi-center studies.
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