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Abstract. Morphological operations such as erosion, dilation, and skele-
tonization offer valuable tools for processing and analyzing segmenta-
tion masks. Several studies have investigated the integration of differ-
entiable morphological operations within deep segmentation neural net-
works, particularly for the computation of loss functions. However, those
methods have shown limitations in terms of reliability, versatility or ap-
plicability to different types of operations and image dimensions. In this
paper, we present a novel framework that provides differentiable mor-
phological filters on probabilistic maps. Given any morphological filter
defined on 2D or 3D binary images, our approach generates a soft version
of this filter by translating Boolean expressions into multilinear polyno-
mials. Moreover, using proxy polynomials, these soft filters have the same
computational complexity as the original binary filter. We demonstrate
on diverse biomedical datasets that our method can be easily integrated
into neural networks either as a loss function or as the final morpho-
logical layer in a segmentation network. In particular, we show that the
proposed filters for mask erosion, dilation or skeletonization lead to com-
petitive solutions compared to the state-of-the-art.

Keywords: Image Segmentation · Morphological Operations · Deep
Learning

1 Introduction

Morphological operations are often required for analyzing images based on ob-
ject shape and structure [19, 21]. These operations include morphological erosion
and dilation for edge detection [6, 23, 27], morphological opening for noise reduc-
tion [2, 4], and skeletonization for analyzing vessel trajectory and topology [9].

Recent works have explored the integration of morphological operations ei-
ther as layers of a neural network or as loss functions. In all cases, morphological
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operations must be differentiable for gradient-based optimization during train-
ing [8]. Some works have investigated the use of supervised Convolutional Neural
Networks (CNN) to emulate specific morphological operations. While differen-
tiable, these methods [1, 12, 17] require substantial training time, datasets and
fine-tuning, and they only apply to a given operator. As morphological opera-
tions were originally designed for binary images and subsequently extended to
grayscale images with min-max filters [21], other works have considered soft min
and maxpooling layers (based on the counter-harmonic mean) to replace erosion
and dilation in a differentiable manner [5]. Some studies aim at replacing some
convolutional layers with non-linear feature-extracting morphological layers lead-
ing to the so-called Deep Morphological Neural Networks [3, 11, 13, 20]. Other
authors combine traditional segmentation CNNs with loss functions requiring
morphological operators. For instance, Jurdi et al. [5] compute the perimeter of
a segmented structure using min and max pooling. The clDice loss [22] introduces
a similarity measure based on the interpolation of the segmentation masks and
their associated skeletons to preserve the topology of tubular structures, while
computing the soft skeleton of a segmentation by iterating between min and
maxpooling layers. However, this method assumes a fixed structuring element
and may not preserve an object’s topology by creating discontinuities in the
skeleton, leading to topological errors. Menten et al. [10] propose a skeletoniza-
tion operation compatible with gradient-based optimization by using a binary
morphological operator on binary images sampled from probability maps using
the reparameterization trick. However, this approach requires specifying several
sensitive hyperparameters and is restricted to the extraction of skeletons.

In this paper, we propose a novel extension of binary morphological opera-
tions on probability maps that can be seamlessly integrated into neural networks
either as a loss function or as a final morphological layer. A first methodological
contribution consists of the translation of any morphological operation based on
Boolean expressions into a single multilinear or proxy polynomial. The result-
ing soft morphological filters are differentiable, have no hyperparameters to be
tuned, and can be generated from any binary morphological filter.

In a second contribution, we demonstrate their impact on two segmentation
applications, while comparing them with state-of-the-art morphological filters.
First, we define a soft 2D skeletonization and integrate it into the clDice loss [22]
for retinal vessel segmentation. Second, we integrate erosion/dilation filters as
the final layer of a 2D and 3D U-Net to integrate a post-processing step within
the network for improving the detection of calcification plaques in computed
tomography angiography (CTA) of the lower limbs. To foster reproducibility,
our code is available at https://github.com/lisaGUZZI/Soft-morph

2 Method

2.1 Probabilistic Definition of Soft Morphological filters

We consider a generic binary segmentation problem of an image X consisting of
N voxels {Xn}, n = 1 . . . N for any image X. We want to formalize the definition



Differentiable Soft Morphological Filters for Medical Image Segmentation 3
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Fig. 1: (a) Definition of the 4 + 1 neighborhood variables;(b) Probabilistic map
created from a binary retinal blood vessel;(c) Match between the output of 2D
thinning operators based on multilinear vs proxy polynomials.

of a soft morphological filter F⋆() applied on a probabilistic segmentation image
Y = {yn} ∈ [0, 1]N and generate a new probabilistic image Z = {zn} ∈ [0, 1]N =
F⋆(Y). This filter should generalize a given binary filter Z = F (Y ) ∈ {0, 1}N ,
Y ∈ {0, 1}N such that both give the same result when the input probabilistic
image is binary Z = F (Y ) = F⋆(Y ) .

More precisely, the input probabilities yn correspond to the posterior prob-
ability yn = p(Yn = 1|X) ∈ [0, 1] of the binary variables Yn ∈ {0, 1}, result-
ing from a segmentation algorithm, typically the output of a neural network.
The binary morphological operator F () is applied on the (unknown) binary
image Y resulting in a new binary segmentation Z. This operator F () takes
as input k binary variables YN (1,n), . . . , YN (k,n) and outputs a binary variable
Zn = F (YN (1,n), . . . , YN (k,n)) ∈ {0, 1}. The neighborhood function N (i, n) pro-
vides the index of the ith neighbor of voxel n and in mathematical morphology,
it provides the domain where the structuring element is defined. For instance,
considering the typical neighborhoods of 2D or 3D images leads to the choice of
k = 4 + 1 or k = 8 + 1 in 2D and k = 6 + 1, 18 + 1, 26 + 1 in 3D.

The binary operator F () is a Boolean function that has 2k different input
values and outputs a binary variable. The exhaustive list of those values F (a) ∈
{0, 1}, for a ∈ {0, 1}k is called the truth table of F () and can be established
for small values of k. Besides, it can be shown that any Boolean function can
be written as a propositional formula involving the k binary variables with the
logical operator AND (∧), OR (∨) and NOT (¬). For instance, based on the
notation defined in Fig.1a, the dilation operator acting on a 4+ 1-neighborhood
of a 2D image can be written as fDil = Y 0 ∨ Y 1 ∨ Y 2 ∨ Y 3 ∨ Y 4 whereas the
erosion operator is fEro = Y 0 ∧ Y 1 ∧ Y 2 ∧ Y 3 ∧ Y 4.

The morphological operator F () is deterministic but its input is a binary
image Y only known through its posterior probability Y = p(Y |X). Therefore
we aim at estimating the posterior zn = p(Zn = 1|X) of the final segmentation
Z knowing that it results from the application of the morphological operation
Z = F (Y ). Formally, this posterior can be obtained through the law of total
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probability as the expectation of filtered binary segmentation F (a) :

zn = p(Zn = 1|X) =
1∑

Y1=0

. . .
1∑

YN=0

p(Zn = 1|Y ) p(Y |X)

=
∑

a∈{0,1}N

F (a) p(a|X) = Ea∼p(Y |X)F (a) (1)

Eq.(1) defines implicitly the relationship zn = F⋆(Y) of the soft morpholog-
ical filter and it is furthermore required to make the filter differentiable, i.e. to
estimate the derivatives ∂F⋆(Y)

∂ym

2.2 Soft Morphological Filters as multilinear Polynomials

To provide a closed-form expression of a soft filter defined from Eq.(1), we
propose to adopt a polynomial representation of the Boolean function F (a),
a ∈ {0, 1}k. Indeed we can associate with any Boolean function F (a) a multilin-
ear polynomial F⋆(x), x = (x1, . . . , xk)

T ∈ Rk defined as:

F⋆(x) =
∑

a∈{0,1}k

F (a)
k∏

i=1

xai
i (1− xi)

1−ai (2)

It is easy to see that F (a) = F⋆(a), i.e. that the polynomial F⋆(x) coincides by
construction with the Boolean function on the hypercube {0, 1}k. Each monomial
F (a)

∏
i:ai=1 xi

∏
i:ai=0(1− xi) is of degree k and linear with each variable xj ,

making the polynomial multilinear. This property leads to the following result:

Theorem The expectation of a Boolean function F (a) ∈ {0, 1}, a ∈ {0, 1}k over
a set of k independent variables with a ∼ Bernoulli(p), p ∈ [0, 1]k is F⋆(p)

Proof. It is easy to show that Eai∼Bernoulli(pi)(α + βai) = α + βpi using the
linearity of expectation. Thus, we have

Ea1
(F (a)

k∏
j=1

a
aj

j (1− aj)
1−aj ) = F (a)pa1

1 (1− p1)
1−a1

k∏
i=2

aai
i (1− ai)

1−ai).

By the taking the expectation over each variable ai, i > 1, we get Ea(F (a)) =∑
a∈{0,1}k F (a)

∏k
i=1 p

ai
i (1− pi)

1−ai = F⋆(p). □

Therefore, assuming that the marginal posteriors yn = p(Yn|X) are indepen-
dently distributed (which is the case when dealing with the output of segmen-
tation neural networks or mean field approximations), we define the soft mor-
phological filter associated with the binary filter F () as the polynomial value
F⋆(yN (1,n), . . . , yN (k,n)) ∈ [0, 1]. Besides, this result can be simply interpreted as
the multilinear interpolation of the Boolean function over the hypercube {0, 1}k.

Thus, the soft erosion operator is simply ZEro = y0y1y2y3y4 whereas the
dilation operator is ZDil =

∑
a∈{0,1}5,a̸=0

∏5
i=1 y

ai
i−1(1− yi−1)

1−ai
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2.3 Use of Proxy Polynomials

The construction of the multilinear polynomial F⋆() (Eq.(2)) requires the sum-
mation over non-zero elements F (a) of the truth table of size 2k. For non-trivial
truth tables, writing such polynomial requires the use of symbolic computation
software such as SymPy or Maple. But the complexity of such polynomial grows
exponentially with the number k of variables. In practice, when k > 10 for
non-trivial filters the number of monomial becomes often prohibitively large.

When the computation of F⋆ becomes intractable, we propose to use proxy
polynomials F• that have the same complexity as the binary filter F (). To
this end, we first write the binary filter F (a), a ∈ {0, 1}k as a proposition
formula involving the AND, OR and NOT logical operators. For non-trivial
filters, this is done by efficiently enumerating the binary decision diagram rep-
resenting the filter. We then substitute the logical operators with their linear
polynomial equivalents: AND(Y0, Y1 . . . , Yl) ≡ Y0Y1 . . . Yl, OR(Y0, Y1 . . . , Yl) ≡
1 − (1 − Y0)(1 − Y1) . . . (1 − Yl) and NOT(Y0) = 1 − Y0. This results in a
polynomial F•(a) that coincides with F () and F⋆() on the hypercube {0, 1}k
:F (a) = F⋆(a) = F•(a), ∀a ∈ {0, 1}k. The proxy polynomial F•(x) comes in a
factorized form, can be of degree greater than k and usually is not multilinear.
The only difference between the multilinear and proxy polynomials is the appli-
cation of the idempotence rule of Boolean variables Y i

0 = Y0, ∀i > 0 on all vari-
ables. Proxy polynomials can be interpreted as a non-linear interpolation of the
values over the hypercube as opposed to a (multi) linear one for the multilinear
polynomials. It can also be interpreted as a fuzzy logic translation of the binary
filter using the product logic [14]. The proxy soft filters F•(yN (1,n), . . . , yN (k,n))
approximates the true soft filter F⋆(yN (1,n), . . . , yN (k,n)) but remains computa-
tionally tractable with a complexity similar to the one of the binary filter. For
instance the proxy polynomial for the dilation operator on the 4-neighbourhood
written as ZDil = 1− (1− y0)(1− y1)(1− y2)(1− y3)(1− y4) which is multilinear
and much more efficient to compute than the expression given in section 2.2.

2.4 Thinning Filters

Skeletonization aims at extracting a thinned version of an object, while preserv-
ing its essential shape, topology and connectivity [7]. The Boolean expressions
utilized for skeletonization filters were derived from sub-iterative thinning al-
gorithms from [25], for 2D images, and [16], for 3D images. These thinning
algorithms operate on base masks representing the 8+1 or 26+1 local neigh-
borhood configuration of foreground pixels that can be turned into background
in a specific orientation. Each sub-iteration of these algorithms corresponds to
a distinct direction along which thinning operations are applied. In 2D, these
directions include North, South, East, West, while in 3D they are extended to
additional Up and Down directions. The Boolean expressions are translated into
multilinear filters for 2D images and into proxy polynomials for 2D and 3D
images. They are applied iteratively to the image until no change is observed
between 2 iterations.
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3 Results

3.1 Experimental Setup

Datasets. Our framework was evaluated on three datasets: the DRIVE dataset,
comprising 2D retinal blood vessel images [24]; the VesSap dataset [15], with syn-
thetic 3D brain vessels, to benchmark 3D skeletonization methods; and a private
dataset of lower limb CTA scans from the Hospital of Nice, with expert manual
annotations of calcified plaques, for the second use case.

Evaluation Metrics. We assessed performance with multiple metrics: Dice co-
efficient for mask overlaps, the clDice [22] for topology preservation, the mean of
absolute Betti number errors representing the number of connected components
(β0) and holes (β1), and the absolute error of Euler’s characteristics.

Implementation Details. Experiments were conducted with Python 3.11.4,
Pytorch 2.0.1 and GPUs NVIDIA RTX A1000 for the benchmarking experiment,
and 3 Nvidia A40 PCIe for application experiments.

3.2 Morphological filters Benchmarking

Proxy polynomials analysis We evaluate the correspondence between the
output of multilinear and proxy polynomial-based filters for the soft skeletoniza-
tion of a 2D probability map generated from one binary DRIVE dataset (Fig.
1b) as the sigmoid of a scaled distance map. Results reveal a strong correlation
(Pearson correlation coefficient = 0.98, p-value < 0.001)(Fig. 1c) between both
polynomials, with proxy polynomials being five times faster to compute than
multilinear polynomials. Hence, proxy polynomials are efficient substitutes for
multilinear functions in morphological filters with a small impact on the output.

Benchmarking differentiable Morphological operations Table 1 presents
the results for erosion, dilation, and skeletonization operations on 2D and 3D
images. We compare our dilation and erosion filters against the soft max and
minpooling layer from Pytorch. For skeletonization, we compare our filters to
a neural network trained for skeletonization [12], the skeletonization algorithm
from [22] ("Soft Skeleton"), and the skeletonization method from Menten et
al. [10]. The reference methods are the non-differentiable filters implemented in
scikit-image package [26]. Our method outperforms other methods across dif-
ferent metrics. In erosion and dilation operations, our approach achieves com-
parable Dice and topological scores with the baseline. For skeletonization, our
method demonstrates improved performance in preserving vessel topology and
connectivity compared to state-of-the-art methods, comparable with Menten et
al. [10], but achieving a lower computation time in 2D and a better Dice in 3D.
Given the lack of standard metrics to quantify skeleton accuracy, we use Betti
numbers that are topological invariants and Dice score to evaluate the skele-
ton results. However, it is important to note that centerline computation is an
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Table 1: Benchmark of morphological operation methods on 2D and 3D datasets
Dice ↑ β0 ↓ β1 ↓ Euler ↓ Time (s)

DRIVE Dilation Reference - - - - 0.002
2D dataset Ours 1 0 0 0 0.091

Soft maxpooling 0.95 0.10 6.65 6.75 0.003
Erosion Reference - - - - 0.002

Ours 1 0 0 0 0.081
Soft minpooling 0.85 214.10 7.60 211.80 0.003

Skeleton Reference - - - - 0.004
Ours 0.65 0 0 0 0.432

Neural Network 0.77 206.15 22.30 226.85 3.750
Soft-skeleton 0.65 1414.20 66.50 1480.70 0.005
Menten et al. 0.65 0 0 0 0.837

VesSap Skeleton Reference - - - - 2.500
3D dataset Ours 0.50 0 0 0 1800

Soft-skeleton 0.41 8362.20 8.80 8371.00 72.439
Menten et al. 0.48 0 0 0 880

ambiguous task since several centerlines may be associated to the same input.
This is why Betti numbers are often considered to be a more adequate mea-
sure of skeleton accuracy than Dice score. The soft-skeleton of [22] shows high
topological errors due to discontinuties (Fig. 2).

3.3 Applications

Use case 1: Skeleton extraction in clDice loss function for 2D segmen-
tation. We compared the integration of the skeleton extraction methods (based
on proxy polynomials) into the clDice loss function [22] for 2D retinal vessel seg-
mentation using the DRIVE dataset split in 80% training/ 20% testing sets. We
used a 2D U-Net model [18] with a batch size of 16, 500 epochs and a learning
rate of 1e-4. The clDice is used with the soft Dice loss, the weight α representing
the weight of clDice in the loss function. Table 2 shows the performance metrics
of different methods including the Binary Cross Entropy (BCE) and soft Dice
losses alone. Our method yields the highest clDice scores, as well as the lowest
number of β0 and Euler errors, indicating superior segmentation accuracy and
topology preservation compared to baseline methods and existing techniques,
demonstrating its effectiveness in preserving vessel continuity.

We also tested using morphological filters as the final layer of the 2D U-Net,
after the sigmoid layer. We applied morphological dilation, erosion, closing and
opening operations with a soft Dice loss (Table 2). The additional layers have an
important impact on the topological fidelity of the segmentation, matching the
effect of the clDice loss. Topological performance increases even more with the
clDice loss added with our final morphological layer achieving the lowest number
of β0 number errors and the best clDice score overall.
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Table 2: 2D U-Net segmentation performance on DRIVE dataset. (⋆) denotes
statistically significant differences with soft-skeleton and Menten et al. methods
having the same α value using the Wilcoxon rank test.

Loss \Metrics Dice ↑ clDice ↑ β0 ↓ β1 ↓ Euler ↓
BCE 0.81 0.85 48.55 40.75 89.30

SoftDice (baseline) 0.82 0.86 45.35 35.15 80.50
clDice α=0.7 Soft-Ske 0.79 0.88 17.90 27.2 44.60

Menten et al. 0.76 0.85 18.15 38.40 56.55
Ours 0.81 0.89 14.70 27.95 42.65

α=0.5 Soft-Ske 0.82 0.88 24.70 32.05 56.75
Menten et al. 0.78 0.87 25.20 34.35 59.55

Ours 0.83 0.89⋆ 16.50⋆ 32.90 44.40
SoftDice + final layer Dilation 0.82 0.89 19.40 33.15 52.55

Erosion 0.82 0.87 26.90 35.55 62.45
Closing 0.80 0.87 30.55 29.55 60.10
Opening 0.78 0.89 28.00 25.00 52.90

clDice Ours α=0.7 Dilation 0.80 0.90⋆ 11.30⋆ 30.35 41.65
+ final layer Erosion 0.82⋆ 0.89 10.15⋆ 32.75 42.90

Ours α=0.5 Dilation 0.81 0.90⋆ 11.10⋆ 30.55 41.55⋆

Erosion 0.83 0.89 11.10⋆ 36.85 47.95

Fig. 2: Comparison of 2D skeletonization methods. Red arrows highlight signifi-
cant differences.

Use case 2: Calcification plaque detection on CTAs of the lower limbs
We tested the morphological filters as final layers of a 3D U-Net on the 3D
dataset with a batch size of 2 and 250 epochs. The dataset contains 88 images
split into 80% training/ 20% testing sets. In this dataset, we segment the calci-
fication plaques in the arteries of the lower limbs. However, due to their small
size, the Dice coefficient is not appropriate to evaluate the segmentation perfor-
mances. Instead, we use detection metrics to compare the accuracy of detected
calcification plaques using a threshold of 30% overlap between the prediction and
ground truth. Without the morphological filters, detection performance achieve
71.6% average precision, 75.1% F1 score. Using as final layer the closing filter
yields better results with 75.5% average precision, 77.1% F1 score, as well as
the opening filter with 79.09% average precision and 78.58% F1 score. Optimal
results are obtained with the erosion filter reaching an average precision of 91.3%
and 80.8% F1 score.
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4 Conclusion

We introduced a novel framework for differentiable soft morphological filtering
in medical image analysis. We have demonstrated that multilinear polynomials
associated with Boolean operations correspond to the expectation of binary mor-
phological filters. In addition, we have introduced proxy polynomials that lead
to efficient soft filters acting on probability maps. Finally, we have shown on
two use-case applications that the proposed framework could be used effectively
either inside loss functions or as final segmentation layers in order to preserve
topology and connectivity in segmentation problems.

Possible improvements include the optimization of 2D and 3D soft skele-
tonization filters, and the definition of new loss functions and layers ultimately
paving the way for its widespread use in clinical segmentation applications.
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