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Abstract. Semi-supervised learning (SSL) has achieved notable progress
in medical image segmentation. To achieve effective SSL, a model needs
to be able to efficiently learn from limited labeled data and effectively ex-
ploit knowledge from abundant unlabeled data. Recent developments in
visual foundation models, such as the Segment Anything Model (SAM),
have demonstrated remarkable adaptability with improved sample ef-
ficiency. To harness the power of foundation models for application in
SSL, we propose a cross prompting consistency method with segment
anything model (CPC-SAM) for semi-supervised medical image segmen-
tation. Our method employs SAM’s unique prompt design and innovates
a cross-prompting strategy within a dual-branch framework to automat-
ically generate prompts and supervisions across two decoder branches,
enabling effectively learning from both scarce labeled and valuable unla-
beled data. We further design a novel prompt consistency regularization,
to reduce the prompt position sensitivity and to enhance the output in-
variance under different prompts. We validate our method on two medi-
cal image segmentation tasks. The extensive experiments with different
labeled-data ratios and modalities demonstrate the superiority of our
proposed method over the state-of-the-art SSL methods, with more than
9% Dice improvement on the breast cancer segmentation task. Code is
available at: https://github.com/JuzhengMiao/CPC-SAM.

Keywords: Semi-supervised Segmentation · Segment Anything Model
· Prompt Consistency.

1 Introduction

Segmentation is an essential step for accurate disease diagnosis and treatment
planning [4,21]. Although deep learning methods have obtained impressive re-

https://github.com/JuzhengMiao/CPC-SAM
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sults in various organ or lesion segmentation tasks [16], a large scale of labeled
data is required, which are extremely expensive and time-consuming to collect.
Given that unlabeled data is typically plentiful in practice, semi-supervised learn-
ing (SSL) emerges as a compelling approach by efficiently leveraging both the
limited labeled data and the extensive amounts of unlabeled data [2,11,26,27,28].

We consider the keys to the success of SSL methods are two folds. First, the
model must be capable of quickly learning sufficiently general discriminative in-
formation from a limited amount of labeled data. On the other hand, once it has
acquired this discriminative information, the model should effectively leverage
the unlabeled data for further optimization. Current SSL methods mainly fo-
cus on the latter aspect, devising strategies to more effectively utilize unlabeled
data, such as utilizing the predictions as pseudo labels for supervision [2,11], and
imposing a consistency regularization on the predictions of different models or
branches [26,27,28]. However, the first key aspect of rapid learning from limited
labeled data is often overlooked. To overcome this limitation, we draw our atten-
tion to the general segmentation foundation model, i.e., the segment anything
model (SAM), which is pre-trained on a large-scale natural datasets and has the
potential of transferring to a new task by using only limited labeled data with
the impressive few-shot learning capabilities demonstrated in prior research [5].

Current methods adapting SAM to medical image segmentation tend to train
SAM in a fully supervised way with plenty of labeled data [25,29]. Very recently,
only a limited number of works attempt to adapt SAM in the SSL setting.
For example, Samdsk [31] leverages SAM to produce pseudo labels and select
reliable ones into the labeled set to train a traditional segmentation network, i.e.,
a convolutional neural network (CNN). Li et al. [19] generate prompts from the
prediction of a CNN and then choose outputs with a high consistency between
the CNN and SAM as pseudo labels. SemiSAM [30] produces prompts in a similar
way by using the CNN trained in a Mean Teacher framework and uses SAM’s
output as an additional supervision signal. In these methods, SAM is simply
leveraged as a static and standalone component to generate pseudo labels on
medical images, which may not yield desired performance due to the significant
domain gap between natural and medical images [10,13]. Chen et al. [7] include
the fine-tuning of SAM into the loop of SSL and thus enhance the adaptation
ability of SAM to medical images. However, this work only fine-tunes SAM with a
small number of labeled data whereas information contained in the large number
of unlabeled data is not fully explored.

In this paper, we aim to leverage the few-shot learning capabilities of the SAM
model to bolster our SSL framework for rapid learning from a limited amount
of labeled data. Building on this foundation, we then leverage the unique ad-
vantage of SAM’s prompting mechanism [18], to develop effective strategies for
learning from unlabeled data in SSL. We propose a semi-supervised medical im-
age segmentation framework which is driven by cross prompting consistency
with segment anything model (CPC-SAM). Our method innovates a SAM en-
abled cross-prompting strategy within a dual-branch framework, which uses the
unprompted output from one branch to generate prompts for the other branch.
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Then the prompted output from the second branch is employed to guide the
training of the first branch. Such a cross prompting and supervision strategy en-
hances the learning process, effectively leveraging the unlabeled data. Nonethe-
less, without ground truth for the unlabeled inputs, the prompts generated from
unprompted outputs can be inherently unreliable and noisy. The prompted out-
put is thus probably to be unreliable as well due to SAM’s high sensitivity to
prompt positions [9,12]. To address this issue, we design a novel prompt con-
sistency regularization strategy aimed at improving the consistency of outputs
across varying prompts. This strategy reduces SAM’s sensitivity to different
prompts and enhances the invariance of the output, ensuring more reliable and
stable results even when derived from less dependable prompts. Our method has
been extensively evaluated on two public datasets for breast cancer segmentation
and cardiac structure segmentation, showing superiority over existing methods,
especially when the labeled data are extremely limited. Specifically, using only
10 labeled ultrasound images, our method obtains an improvement of over 9%
Dice than various strong baselines on the breast cancer segmentation task.

2 Method

Fig. 1 gives an overview of our cross prompting consistency framework with
SAM for SSL medical image segmentation, called CPC-SAM. Considering the
few-shot learning capabilities of the SAM model, we directly fine-tune SAM in
the SSL pipeline to achieve the rapid learning from a limited amount of labeled
data. Building on this foundation, a cross prompting dual-branch framework is
developed based on the promptable property of SAM to make full use of the
large scale of unlabeled data. Moreover, considering the potential harmfulness of
SAM’s sensitivity to prompts’ positions for SSL, we further propose the prompt
consistency regularization to enhance output invariance under various prompts.

2.1 Problem Formulation and Architecture

SSL segmentation aims to obtain a satisfactory performance using a small num-
ber of labeled data L = {(xi,yi)}

N
i=1 and a large scale of unlabeled data U =

{(xi)}N+M
i=N+1, where xi ∈ RH×W indicates an H×W image and yi ∈ {0, 1}H×W×C

denotes the corresponding annotation for labeled data with C semantic classes.
To improve the prediction quality of SAM on the target dataset, we directly
fine-tune SAM in the SSL setting using all the available data. The fine-tuned
SAM also functions as the final segmentation model. To enable the better use
of the unlabeled data, we propose a cross prompting strategy introduced later
and adapt the original architecture of SAM to a dual-branch SAM with one
shared image encoder E and prompt encoder P, on top of which two decoders
D1,D2 with the same structure but different weight initializations are used to
encourage the output diversity. The function of each module remains the same
as the original SAM [18], with the image encoder to extract feature embeddings
from the image, the prompt encoder to output prompt embeddings for given
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Fig. 1: The overview of our proposed method. The adapted dual-branch SAM is
fine-tuned by the cross prompting loss Lu

cross with a prompt consistency regu-
larization Lu

c on the unlabeled data in addition to the supervised loss Ls (Ls is
not illustrated for a more concise figure). Lu

c is used to reduce SAM’s sensitivity
to prompt positions. Ls uses annotations to supervise both prompted and un-
prompted outputs for the labeled data.

prompts, and the mask decoder to produce segmentation results based on the
feature embeddings and prompt embeddings. As done in [29], when no explicit
prompts are given, the default dense prompt embedding is used and fine-tuned
during training for automatic segmentation, which is also used during inference.

2.2 SAM-enabled Cross Prompting

Although fine-tuning on the target dataset can effectively integrate domain
knowledge of specific medical images to SAM, current methods only use the
small labeled set for fine-tuning [7], neglecting the potential of the large number
of unlabeled images in the SSL setting and thus limiting the fine-tuning per-
formance on target datasets. Therefore, we propose a cross prompting scheme
based on the promptable property of SAM to make full use of the unlabeled data
and integrate more domain knowledge on the target task to SAM.

First, we generate prompts for each other from the unprompted outputs un-
der our dual-branch framework. Here, point prompt is used following [7,15,19,30]
for its simplicity and flexibility. Take the first branch D1 for prompt generation
as an example. Given an unlabeled image x ∈ U , we first obtain the output pu1
from D1 using the feature embedding and the default prompt embedding since
no explicit prompt is provided: pu1 = D1(E(x),P(None)). Then, we generate
the point prompt Pt2 from pu1 by selecting the center or a random point of the
largest connected component of the object of interest. After that, we can obtain
the prompted output of D2: p̂u2 = D2(E(x),P(Pt2)). Similarly, we can obtain the
unprompted output pu2 when using D2 to produce prompts and the prompted
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prediction p̂u1 output by D1. Second, we use the prompted outputs to guide the
optimization of unprompted predictions based on the intuition that the output
of SAM given an appropriate prompt p̂u should be more accurate and reliable
compared to the output without any explicit prompts pu, since the prompt of-
fers position information of the target area. To alleviate the confirmation bias of
using the same branch to supervise itself, the prompted output p̂u1 of D1 is used
to supervise the unprompted prediction pu2 of D2, and vice versa. Therefore, our
cross prompting loss is a symmetrical constraint with a combination of the Dice
loss and the cross-entropy loss:

Lu
cross =

1

2
[Ldice(p

u
1 , p̂

u
2 ) + Lce(p

u
1 , p̂

u
2 )] +

1

2
[Ldice(p

u
2 , p̂

u
1 ) + Lce(p

u
2 , p̂

u
1 )] (1)

Compared with the vanilla cross pseudo supervision method that directly uses
the output to supervise each other [8], our cross prompting scheme makes full
use of the promptable property of SAM as a refinement step to obtain a better
pseudo label as a better guidance than the unprompted output. The final SSL
performance is thus improved as shown in the ablation studies.

2.3 Prompt Consistency Regularization

The cross prompting scheme solves how to utilize unlabeled images to improve
the fine-tuning performance. The key to its success is generating reliable predic-
tions for unlabeled data in the dilemma where SAM’s output is sensitive to the
prompt locations whereas the point prompts generated from the noisy coarse
mask in SSL tend to have a high variance and a low accuracy in terms of posi-
tions. The core of alleviating this dilemma is to enhance the output invariance
under various prompts. In the ideal case, predictions under two different prompts
on the target area should be the same and approach the ground truth as close as
possible in the meanwhile. Based on this motivation, we propose a novel prompt
consistency regularization (PCR) loss to enhance the output invariance of SAM
under various prompts. Take the prompted outputs of D1 as an example, where
D2 is used to generate prompts, we first find the largest connected component of
each semantic class of the unprompted prediction pu2 as a post-processing step for
the noisy output to increase the chance of selecting a point on the hidden ground
truth area. After that, a center point and a random point are selected from the
the largest connected component simultaneously, based on which two seperate
predictions are obtained by taking each as the prompt, denoted as p̂u1,c, p̂

u
1,r, re-

spectively. The center point is selected since it can provide a stable prediction
empirically, while the random point prompt is chosen to simulate the potential
prompt variance in SSL segmentation. Then, p̂u1,r should be similar to p̂u1,c. Since
the ensemble of multiple predictions can usually obtain a more robust result,
we use the ensemble of both predictions p̂u1 = 1/2(p̂u1,r + p̂u1,c) as a more reliable
guidance for the randomly prompted prediction p̂u1,r. Symmetrically, we can ob-
tain the prompted outputs p̂u2,c, p̂

u
2,r and the ensemble result p̂u2 of D2. Finally,

the prompt consistency regularization is applied to each decoder seperately:

Lu
c =

1

2

[
Ldice(p̂

u
1,r, p̂

u
1 ) + Lce(p̂

u
1,r, p̂

u
1 )
]
+

1

2

[
Ldice(p̂

u
2,r, p̂

u
2 ) + Lce(p̂

u
2,r, p̂

u
2 )
]

(2)
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The ensemble results p̂u1 , p̂u2 are also used to be the supervision signals in Equ. 1
as a by-product of PCR. Also, since the output using the center prompt tends
to be more stable, the PCR is only applied to pu1,r, p

u
2,r. The efficacy of such a

design will be proved in ablation studies.
Meanwhile, to ensure the prompted outputs can approach the ground truth

well, we supervise the prompted outputs pl1,c, p
l
2,c, p

l
1,r, p

l
2,r with annotations on

the labeled set besides the supervised loss on unprompted outputs pl1, pl2 in SSL:

Ls = Ll
s(p

l
1,y)+Ll

s(p
l
2,y)+Ll

s,p(p
l
1,c,y)+Ll

s,p(p
l
2,c,y)+Ll

s,p(p
l
1,r,y)+Ll

s,p(p
l
2,r,y)

(3)
where Ll

s = 0.8Ldice+0.2Lce following SAMed [29] and Ll
s,p = 0.5Ldice+0.5Lce.

Finally, the total loss for training is the combination of the supervised loss Ls

on labeled data, the cross prompting loss Lu
cross and the prompt consistency

regularization loss Lu
c on unlabeled data: Ltotal = Ls + λ1L

u
cross + λ2L

u
c .

3 Experimental Results

Datasets. We evaluate our proposed method on two publicly available datasets:
the BUSI dataset [1] and the ACDC dataset [4]. The BUSI dataset [1] consists
of 647 ultrasound images for breast cancer segmentation, with 437 benign cases
and 210 malignant ones. We randomly split the data on each category and finally
obtain 431, 86, and 130 images for training, validation, and testing, respectively.
The ACDC dataset [4] contains 200 cine MRI scans from 100 patients with three
regions of interest, i.e., the right ventricle cavity, the myocardium, and the left
ventricle cavity. Following [3,6], the dataset is randomly split on the patient level,
with 70 patients for training, 10 for validation, and 20 for testing.
Implementation Details and Evaluation Metrics. Our method is imple-
mented by Pytorch and trained on an NVIDIA A40 GPU. Most training settings
are the same on both datasets. Specifically, the ViT_B version of SAM is em-
ployed. Following [29], we apply LoRA [14] to the query and value heads in each
transformer block of E with r = 4 and optimize all the parameters in P and
D1,D2 through the normal back propagation. We load the pre-trained weights
for the image encoder and prompt encoder, whereas two decoders are initialized
randomly. We expand the number of point prompt embeddings in the prompt
encoder to the number of semantic classes for multi-class segmentation. Also, we
increase the output resolution of mask decoders by the progressive upsampling
strategy in [5]. The input images are resized to 512×512 and normalized to [0,1].
Data augmentation used in training include random rotation between [-20◦, 20◦]
and random flips. Our adapted SAM is optimized by an AdamW optimizer for
10000 epochs. The same warmup and exponential learning rate decay strategy
as [29] are adopted, setting the maximum learning rate as 0.001 and the warmup
period as 5000 iterations. λ1 and λ2 are empirically set as 0.4 and 0.05. The batch
size is 6 and 12 for the BUSI and ACDC dataset, respectively, each containing
half labeled data. As done in [3,6], four evaluation metrics are taken, includ-
ing the Dice similarity coefficient (DSC), Jaccard (JC), 95% Hausdorff Distance
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Table 1: Comparisons with SOTA methods on the BUSI and ACDC dataset.
Column "#Lab" denotes the number of labeled data and the number of all
training data, respectively.

Method BUSI ACDC
#Lab DSC↑ JC↑ HD95↓ ASD↓ #Lab DSC↑ JC↑ HD95↓ ASD↓

U-Net [24] 431/431 77.19 68.29 75.03 31.21 70/70 91.53 84.77 4.23 1.11
SAM-point(MIA’23) [22] 0/431 52.99 44.51 168.26 91.78 0/70 62.88 49.53 20.46 7.07

U-Net [24] 10/431 31.63 24.52 159.49 63.43 1/70 29.37 20.53 107.51 52.84
SAMed [29] 10/431 65.09 54.78 119.75 47.84 1/70 75.01 61.53 28.99 9.13

UAMT(MICCAI’19) [28] 10/431 40.93 30.96 175.31 76.51 1/70 29.14 20.14 107.69 53.58
CPS(CVPR’21) [8] 10/431 32.92 25.70 144.92 50.54 1/70 30.46 21.00 95.74 45.48
URPC(MIA’22) [20] 10/431 32.16 24.75 151.59 64.97 1/70 31.00 20.81 123.03 59.94

MC-Net+(MIA’22) [26] 10/431 36.24 27.45 167.91 71.80 1/70 38.84 28.58 62.21 30.67
DCNet(MICCAI’23) [6] 10/431 42.14 32.11 154.39 64.21 1/70 41.13 31.61 56.16 24.71

BCP(CVPR’23) [3] 10/431 61.81 51.12 112.91 38.15 1/70 68.39 56.8 50.9 21.99
UniMatch(CVPR’23) [27] 10/431 60.98 49.85 109.79 47.50 1/70 84.47 74.25 15.36 4.57

SemiSAM [30] 10/431 43.43 32.48 177.30 84.46 1/70 34.18 23.96 100.75 47.03
CPC-SAM (ours) 10/431 71.20 61.15 100.22 37.86 1/70 85.56 75.74 9.19 2.84

U-Net [24] 20/431 44.22 34.73 160.04 69.52 3/70 45.95 35.96 71.11 32.47
SAMed [29] 20/431 67.28 57.55 107.31 49.70 3/70 83.04 71.98 14.93 4.05

UAMT(MICCAI’19) [28] 20/431 45.83 35.84 163.53 80.92 3/70 56.67 45.93 15.06 45.24
CPS(CVPR’21) [8] 20/431 46.74 37.61 142.73 56.70 3/70 56.87 46.88 20.18 2.91
URPC(MIA’22) [20] 20/431 45.26 35.51 173.11 73.47 3/70 55.98 44.75 40.47 14.13

MC-Net+(MIA’22) [26] 20/431 47.29 33.00 183.14 84.53 3/70 65.37 54.18 27.64 6.32
DCNet(MICCAI’23) [6] 20/431 56.87 46.60 130.31 56.14 3/70 72.21 62.27 26.50 10.59

BCP(CVPR’23) [3] 20/431 65.54 56.05 93.07 39.09 3/70 87.57 78.58 8.68 2.30
UniMatch(CVPR’23) [27] 20/431 62.47 51.48 100.73 45.88 3/70 87.31 78.20 8.62 2.74

SemiSAM [30] 20/431 50.09 38.63 170.42 77.85 3/70 51.01 39.45 70.13 28.26
CPC-SAM (ours) 20/431 72.41 62.72 96.26 40.93 3/70 87.95 79.01 5.80 1.54

Fig. 2: Visualizations of different methods on the BUSI dataset with 10 labeled
images (top) and on the ACDC dataset with 1 labeled patient (bottom).

(95HD), and the average surface distance (ASD). The unit of DSC and JC is %.
The unit of HD95 and ASD is pixel and mm on the BUSI and ACDC dataset,
respectively, since the resolution is not provided on the BUSI dataset.
Comparisons with the State-of-the-arts. We compare our method with
the state-of-the-arts (SOTA) SSL methods, including UAMT [28], CPS [8],
URPC [20], MC-Net+ [26], DCNet [6], BCP [3], and UniMatch [27], and a
representative SAM-based SSL method SemiSAM [30]. We also compare with
the supervised counterparts trained with labeled data alone, i.e., U-Net [24] and
SAMed [29]. The zero-shot performance of SAM is also included using the center
point prompt generated from the ground truth labels following [22], denoted as
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SSL Cross Prompting PCR DSC↑ JC↑ HD95↓ ASD↓
77.26 64.88 15.72 5.22

✓ 80.20 68.44 19.48 6.52
✓ ✓ 84.75 74.39 13.41 3.84
✓ ✓ ✓ 85.56 75.74 9.19 2.84

Table 2: Ablation studies of different components of
our method on the ACDC dataset.

Fig. 3: Effects of various
consistency constraints.

# Center # Random DSC↑ JC↑ HD95↓ ASD↓
0 2 84.95 74.66 12.53 3.64
1 1 85.56 75.74 9.19 2.84
1 5 84.46 74.10 13.19 3.63
1 10 84.23 73.61 12.75 3.95

Table 3: Effects of different numbers of center and
random points in the PCR on the ACDC dataset.

Fig. 4: Effects of differ-
ent architectures.

"SAM-point". As shown in Table 1, our method outperforms other SSL methods
on the BUSI dataset by a large margin of over 9.3% and 6.8% DSC when different
numbers of labeled data are used. On the ACDC dataset, our method obtains
the best results on all the metrics across the two labeled-data ratios. It is worth
noting that although SAMed only using the labeled data can obtain compara-
ble and even better results to some SSL methods, our proposed method obtains
considerably better results on both datasets thanks to the effective use of unla-
beled data. Moreover, by using SAM to generate predictions for unlabeled data,
SemiSAM obtains a superior result to most SSL methods on the BUSI dataset.
However, its performance on the ACDC dataset degrades steeply, probably due
to the difficulty of segmenting the ring structure of the myocardium without
fine-tuning as shown in [23]. The robustness and superior results of our method
validate the necessity of fine-tuning on the target dataset and effectiveness of our
proposed method. The ensemble results of two branches is reported in this work,
but the difference between each branch and the ensembled result is marginal,
e.g., 85.59%, 85.47% and 85.56% DSC for D1,D2, and ensemble, respectively
on the ACDC dataset with 1 labeled patient. The visualization comparisons in
Fig. 2 further validate the superiority of our method.
Ablation Studies. Table 2 shows ablation studies on the key components of
our method with the ACDC dataset. Obviously, introducing unlabeled data into
fine-tuning (Row 2-4) outperforms training on the labeled data alone (Row 1)
with a margin of over 2.9% DSC. Also, using only the center point prompt
(Row 3) for cross prompting, we can obtain superior results over the method
using the unprompted outputs to supervise each other (Row 2), proving the
efficacy of the cross prompting scheme. With the help of PCR, the result is
further improved by 0.81% DSC. Also, we show the efficacy of specific designs of
the PCR strategy in Fig. 3, proving the necessity of using ensemble results and
dropping the regularization on the center prompted outputs. We further validate
the efficacy of our center-random prompt selection strategy (Row 2) in Table 3.
Introducing more random points leads to a lower performance, possibly because
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more random point prompts can include some points outside the hidden ground
truth for unlabeled data. Moreover, we apply our method to other architectures,
such as the original SAM with only one mask decoder and 2 models with two
SAMs (See Fig. 4). The inferior result using 1 branch might be caused by the
more serious confirmation bias problem in such a self-training framework [8,17].

4 Conclusion

This paper proposes a cross prompting framework with a prompt consistency
regularization to adapt SAM for SSL medical image segmentation. Comparisons
on two datasets demonstrate the efficacy of our method, especially when labeled
data are extremely limited. Since our method is general, it can be easily extended
to medical-specific foundation models such as SAM-Med2D beyond the original
SAM by changing the backbone and lead to a potential performance improve-
ment with more domain knowledge. In the future, we’ll explore more strategies
to select appropriate prompts for reliable outputs.
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