
FM-OSD: Foundation Model-Enabled One-Shot
Detection of Anatomical Landmarks

Juzheng Miao1, Cheng Chen2(�), Keli Zhang3, Jie Chuai3,
Quanzheng Li2,4, and Pheng-Ann Heng1,5

1 Department of Computer Science and Engineering,
The Chinese University of Hong Kong, Hong Kong, China

2 Center for Advanced Medical Computing and Analysis, Massachusetts General
Hospital and Harvard Medical School, Boston, MA, USA

cchen101@mgh.harvard.edu
3 Huawei Noah’s Ark Lab, Shenzhen, China

4 Data Science Office, Massachusetts General Brigham, Boston, MA, USA
5 Institute of Medical Intelligence and XR,

The Chinese University of Hong Kong, Hong Kong, China

Abstract. One-shot detection of anatomical landmarks is gaining signif-
icant attention for its efficiency in using minimal labeled data to produce
promising results. However, the success of current methods heavily relies
on the employment of extensive unlabeled data to pre-train an effective
feature extractor, which limits their applicability in scenarios where a
substantial amount of unlabeled data is unavailable. In this paper, we
propose the first foundation model-enabled one-shot landmark detection
(FM-OSD) framework for accurate landmark detection in medical im-
ages by utilizing solely a single template image without any additional
unlabeled data. Specifically, we use the frozen image encoder of visual
foundation models as the feature extractor, and introduce dual-branch
global and local feature decoders to increase the resolution of extracted
features in a coarse-to-fine manner. The introduced feature decoders are
efficiently trained with a distance-aware similarity learning loss to incor-
porate domain knowledge from the single template image. Moreover, a
novel bidirectional matching strategy is developed to improve both ro-
bustness and accuracy of landmark detection in the case of scattered
similarity map obtained by foundation models. We validate our method
on two public anatomical landmark detection datasets. By using solely a
single template image, our method demonstrates significant superiority
over strong state-of-the-art one-shot landmark detection methods. Code
is available at: https://github.com/JuzhengMiao/FM-OSD.
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1 Introduction

Accurate anatomical landmark detection is an essential step in many clinical ap-
plications, such as disease diagnosis [11,18,24], therapy planning [5,20], and reg-
istration initialization [9,14,19]. Although deep learning methods have achieved
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impressively accurate detection results [11,12,16,25,27], a large number of high-
quality labeled data are typically needed, which are extremely time-consuming
and difficult to obtain from domain experts, limiting their use in clinical practice.

Considering these challenges, accurate landmark detection with limited la-
beled data and even under the one-shot setting, i.e., utilizing one labeled tem-
plate image, has been explored by researchers [4,17,19,21,23,26]. These methods
typically rely on a good feature extractor to obtain the feature representation
for each pixel, based on which a matching strategy, such as the nearest neighbor
searching strategy, can be applied to find corresponding positions on the query
image given the template image [4,17,19,21,26]. Therefore, current one-shot med-
ical landmark detection methods often leverage network weights pre-trained on
natural images and focus on the design of effective contrastive loss to obtain a
feature extractor by using large amounts of unlabeled target data. For example,
Yao et al. [21] apply the contrastive loss on different network layers by taking
the point after augmentation as the positive sample and all others as negative
samples. This method leverages hundreds of unlabeled images in addition to the
labeled template image to effectively train the feature extractor. Zhu at al. [26]
even optimize their feature extractor on a combination of three landmark detec-
tion datasets with around 1000 X-ray images for a universal one-shot landmark
detection. Moreover, the unlabeled data are used to train an additional heatmap
regression network under the guidance of pseudo labels generated by matching
the features from the feature extractor, as discussed in [17,19,21,26]. Therefore,
existing one-shot anatomical landmark detection methods are limited by their
dependence on large quantities of unlabeled data, which constrains their practi-
cal use in scenarios where additional images are unavailable.

To eliminate the reliance on a substantial volume of unlabeled data for one-
shot anatomical landmark detection, we are motivated to investigate the efficacy
of pre-trained foundation models as feature extractors. This inspiration is rooted
in the remarkable zero-shot capabilities of foundation models like DINO [6], DI-
NOv2 [15], and SAM [13], demonstrated in various tasks [1,3]. However, leverag-
ing features extracted from foundation models for landmark detection in medical
images faces multiple challenges. First, the resolution of features from founda-
tion models is inherently lower because the transformer architecture provides
patch-wise encoding rather than pixel-wise representation. Yet, for landmark
detection tasks, high-resolution features are crucial [1,2]. Second, large founda-
tion models are usually pre-trained on natural images, which can impact their
ability to discriminate effectively when extracting features from medical images
due to the domain gap [8,10]. Third, precise landmark detection requires accu-
rate position-related semantic information, which is often ambiguous in features
from foundation models like DINO [1]. This ambiguity is exacerbated in medical
images, where similar patches are widespread, potentially leading to a scattered
similarity map and causing the commonly used matching strategy such as nearest
neighbor search method to identify incorrect points.

In this paper, to the best of our knowledge, we present the first foundation
model-enabled one-shot landmark detection (FM-OSD) framework for medical
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images, achieving accurate landmark detection by utilizing only a single template
image, without requiring any additional unlabeled images. Our method roots in
the powerful feature extraction capabilities of pre-trained visual foundation mod-
els, utilizing their frozen image encoder as our feature extractor. Considering the
challenges in the features directly extracted from foundation models on medi-
cal images, we first introduce dual-branch global and local feature decoders to
enhance the resolution of extracted features for landmark detection in a coarse-
to-fine manner. The introduced feature decoders are lightweight and learnable,
and can be efficiently trained with a proposed distance-aware similarity learn-
ing loss to integrate domain knowledge contained in the one labeled template
image. Moreover, we develop a bidirectional matching strategy to improve both
robustness and accuracy of landmark detection in the case of scattered similarity
maps, by taking the inverse matching error on the template image as a guid-
ance. Our method demonstrates significant improvements over state-of-the-art
(SOTA) methods for one-shot landmark detection on two public X-ray datasets.
Our FM-OSD method obtains an improvement of over 16% in terms of the de-
tection error, compared with various strong baselines that require hundreds of
unlabeled data from the target dataset.

2 Method

Fig. 1 illustrates our one-shot anatomical landmark detection framework with
foundation models. By leveraging the powerful feature extraction capabilities
of visual foundation models and our proposed novel feature enhancement and
matching strategies, our method achieves anatomical landmark detection using
only a single template image, without requiring any additional unlabeled images.

2.1 Global and Local Feature Enhancement of Foundation Model

We aim to leverage deep features extracted from a pre-trained visual foundation
model as dense visual descriptors for one-shot landmark detection tasks. How-
ever, the image encoder of a pre-trained foundation model often generate feature
maps with downsampled resolution, which significantly restricts their effective-
ness in landmark detection. Additionally, the feature extractor of the foundation
model is trained on natural images, leading to a substantial domain shift when
applied to medical images. To address these challenges, we propose a coarse-
to-fine landmark detection framework featuring dual-branch global and local
learnable decoders. Our approach enhances the feature resolution for landmark
detection in a coarse-to-fine manner and improves feature quality by incorporat-
ing domain knowledge contained in the template image.

Specifically, as shown in Fig. 1(a), for the coarse stage, the entire input image
I ∈ RH×W is downsampled into a size with the short side of 224 and is then
fed into the frozen image encoder E of a foundation model, which typically un-
dergoes additional downsampling of the feature maps due to the patch encoding
process in vision transformers. In order to restore the feature resolution that is
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Fig. 1: Overview of our proposed method. In training, two light decoders are up-
dated using the distance-aware similarity learning, while the features are frozen
and a bidirectional matching strategy on top of the combination of global and
local features is adopted to find robust landmark predictions on query images.

diminished during the patch encoding process, a trainable global feature decoder
DG consisting of upsampling and convolutional layers is attached to the image
encoder, facilitating the extraction of global features, denoted by FG. The coarse
landmark positions on the query images can then be identified by matching the
similarity of global features between the query images and the template image
with our proposed bidirectional matching strategy for which we will elaborate
in the next section: Pc = BDM(FG,t, FG,q), where FG,t and FG,q represent the
global features of the template and query image, respectively. For the fine stage,
we aim to construct high-resolution local representations by cropping a 224×224
local region ILi containing the identified coarse position for each landmark, with
i incidating the i-th landmark. The cropped local region is fed into the frozen
image encoder and a local feature decoder DL consisting of multiple deconvo-
lutional layers to obtain fine-grained local features FL

i . To further incorporate
both the global context information into the local features, we upsample the
corresponding global feature regions to the same size of the local feature maps
and add them together to obtain the fused local features FF

i for final matching.
Distance-aware similarity learning loss. To enhance the feature qual-

ity extracted from the foundation model with increased discrimination among
features from different positions, we aim to effectively optimize the global and
local feature decoders by leveraging just one single template image It ∈ RH×W

annotated with N landmarks Pt = {(xt
i, y

t
i) | i = 1, · · · , N}. Intuitively, the
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feature of points close to the target landmark should have a high similarity to
the feature of the target landmark, and the points far away from the target land-
mark should have a low similarity. Therefore, we takes the distance to the target
landmark into consideration and proposes a distance-aware similarity learning
loss. The prediction similarity map is obtained by calculating the cosine similar-
ity between the feature of the ground truth landmark and the feature of other
points across the image: Si = cos(F, F (xt

i, y
t
i)), where F indicates the global or

local feature map and F (xt
i, y

t
i) means the feature vector on F at the position

of (xt
i, y

t
i). "cos" denotes the cosine similarity. The ground truth similarity map

for this landmark is generated by using a 2D Gaussian distribution as follows:

Yi = e−
(x−xt

i)
2
+(y−yt

i)
2

2σ2 , x ∈ [0, H − 1], y ∈ [0,W − 1] ,where the center of the
Gaussian distribution is located at the ground truth landmark (xt

i, y
t
i), with the

highest similarity of 1. The ground truth similarity value decreases with the in-
crease of the distance to the ground truth landmark, where the decreasing speed
is controlled by the standard deviation σ. Finally, a Mean Square Error (MSE)
constraint is imposed between the global/local similarity maps (SG

i , SL
i ) and

their corresponding ground truth heatmaps (Y G
i , Y L

i ) for all the N landmarks:

L =
1

N

N∑
i=1

MSE
(
SG
i , Y G

i

)
+MSE

(
SL
i , Y

L
i

)
(1)

2.2 Bidirectional Matching Strategy

With the extracted features of the template and query image, the success of
one-shot landmark detection relies on the development of an effective matching
strategy to find the corresponding point on the query image based on feature sim-
ilarity with the ground truth landmark on the template image. The commonly
used matching strategy is selecting the point with highest feature similarity to
the template landmark. However, the feature similarity map often lacks the ac-
curate focus on a single point since the feature extracted by foundation models
like DINO is usually ambiguous [1] in terms of their spatial distribution, re-
flecting similar features over extensive areas, as shown in the similarity map in
Fig. 1. As a result, directly choosing the query point with the highest similarity
to template landmark could result in inaccurate landmark detection.

To improve the matching accuracy, we propose a novel bidirectional matching
strategy (BDM) to find the landmark pair (p̂q

i , p̂
t
i) with not only a high feature

similarity from template to query image but also a low inverse-matching error
from query to template. (p̂q

i , p̂
t
i) indicates the matched position for the i-th

landmark on the query image and the template image, respectively and p̂q
i is

the final prediction for the query image. Such a two-side agreement is similar
to the Best-Buddies Similarity method for template matching [7], which has
been theoretically and experimentally demonstrated to be a robust and reliable
matching method between two sets of points. Moreover, the inverse-matching
error for the matching from query to template can be calculated since the ground
truths are known and this can be taken as an estimation of the matching error
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on the query image Iq. Specifically, our proposed BDM is formulated as follows:

(p̂q
i , p̂

t
i) = argmin

(c
q
i ,c

t
i)∈Ω

Dist(cti,p
t
i), i = 1, · · · , N

s.t. Ψ = {cqi | cqi ∈ argtopk
(x,y)∈Iq

cos(F q, F t(pt
i))}

Ω = {(cqi , c
t
i) | cqi ∈ Ψ, cti = argmax

(x,y)∈It

cos(F t, F q(cqi ))}

(2)

where pt
i = (xt

i, y
t
i) ∈ Pt is the annotation on It and "Dist" calculates the

Euclidean distance. "argtopk" selects the points with the top-k similarity val-
ues in the query image Iq. F q and F t are the feature map of Iq and It and
are set as FG,q, FG,t and FF,q

i , FF,t
i for the coarse and fine stage, respectively.

F t(pt
i), F

q(cqi ) denote the feature vector on F t, F q with a position of pt
i, c

q
i .

There is a total of three steps to solve this optimization problem. First, find a
set of k candidate points on the query image Iq with the top-k highest similarities
to the template landmark feature F t(pt

i), denoted as Ψ . Second, for each point in
Ψ , we find its matching point cti back to the template image It with the highest
similarity and include each candidate point pair in Ω. Finally, we calculate the
distance between cti and the ground truth landmark pt

i for each pair in Ω and
select the one with the smallest distance, i.e., (p̂q

i , p̂
t
i). The corresponding point

on the query image p̂q
i is taken as the final predicted landmark. The BDM

method is applied to the matching of both global features and local features.

3 Experimental Results

Datasets and Evaluation Metrics. We evaluate the effectiveness of our
method using two public X-ray datasets that are commonly utilized in prior
one-shot anatomical landmark detection studies. The Head X-ray dataset [18]
consists of 400 lateral cephalograms with a resolution of 0.1 mm and 19 target
landmarks. This dataset has been officially split, and we use a single labeled im-
age from the training set as our template image, while employing the 250 testing
images as our test set. The Hand X-ray dataset, labeled by [16], contains 909
radiographs with 37 labeled landmarks. The length between two endpoints of
the wrist is assumed to be 50 mm [16]. Following [16,17,23], we use one image
from the first 609 images as the template image, and utilize the remaining im-
ages for testing. Two commonly used evaluation metrics are employed, i.e., the
mean radial error (MRE) and the successful detection rate (SDR) [17,23]. The
MRE measures the Euclidean distance between two points while SDR counts
the percentage of predictions with a distance under various thresholds, which
are set to be 2 mm, 2.5 mm, 3 mm, 4mm for the Head X-ray dataset and 2 mm,
4 mm, 10 mm for the Hand X-ray dataset, respectively.
Implementation Details. The image encoder in our method is taken from
DINO-S [6], with features extracted from the "key" head of the ninth layer. The
investigation on using different foundation models and different layers have been
provided in our ablation study. The template image is augmented with random
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Table 1: Comparisons with SOTA methods on the Head and Hand dataset.
"Label" and "Unlabel" denote the number of labeled and unlabeled data, re-
spectively. + indicates the method is trained with multiple datasets.

Method
Head Dataset Hand Dataset

Label/
Unlabel

MRE↓ SDR (%)↑ Label/
Unlabel

MRE↓ SDR (%)↑
(mm) 2 mm 2.5 mm 3 mm 4 mm (mm) 2 mm 4 mm 10 mm

GU2Net [27] 988/0+ 1.54 77.79 84.65 89.41 94.93 988/0+ 0.84 95.40 99.35 99.75
CC2D [21] 1/149 2.36 51.81 63.13 73.66 86.25 1/608 2.65 51.19 82.56 95.62
SAEM [19] 1/149 2.58 54.34 64.51 70.82 80.76 1/608 1.69 76.61 92.52 99.08
SCP [17] 1/149 2.74 43.79 53.05 64.12 79.05 1/608 2.47 - - -

EGTNLR [23] 1/149 2.27 49.45 63.07 74.70 88.91 1/608 1.81 64.62 95.03 99.97
UOD [26] 3/985+ 2.43 51.14 62.37 74.40 86.49 3/985+ 2.52 53.37 84.27 97.59

FM-OSD (ours) 1/0 1.82 67.35 77.92 84.59 91.92 1/0 1.41 86.66 96.66 99.11

Fig. 2: Visualizations of different methods on the head and hand dataset. Red and
green points indicate predicted landmarks and ground-truth labels, respectively.

shifting, scaling and rotating for 500 times. Following [1], the patch size and the
stride are set as 8×8 and 4, respectively for patch generation. The two decoders
have an output feature dimension of 256 and are optimized by an Adam optimizer
with a fixed learning rate of 2e-4 and a batch size of 4. On the Head dataset, the
global decoder is updated by 20000 iterations using a standard deviation of 5 for
the ground-truth Gaussian similarity map, while the local decoder is updated by
1000 iterations with a standard deviation of 2. On the Hand dataset, we optimize
both decoders using a standard deviation of 8 but update the global and local
decoder by 20000 and 3000 iterations, respectively. During inference, the k for
BDM is empirically set as 3 and 5 for the Head and Hand dataset, respectively.
Our method is implemented using Pytorch and trained on an NVIDIA A40 GPU.
Comparisons with State-of-the-arts. We compare our method with SOTA
one-shot anatomical landmark detection methods, including CC2D [21], SAEM
[19], SCP [17], EGTNLR [23] and UOD [26]. All these comparison approaches
and our method use the same template image as in [21,22,26], with the differ-
ence being that our method does not employ additional unlabeled images. We
also compare with SOTA fully supervised methods GU2Net [27] as an upper
bound. The results for other methods are directly obtained from their original
papers since we use the same datasets and template image, except for SAEM
and EGTNLR, for which we implement their released code on the two datasets.

As shown in Table 1, our FM-OSD method significantly outperforms other
SOTA one-shot methods on both datasets, even though we only utilize one
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BDM Global Local MRE (mm)↓ SDR (%)↑
2 mm 4 mm 10 mm

3.72 31.13 77.49 97.60
✓ 2.82 51.87 89.06 98.23
✓ ✓ 1.86 76.75 96.60 99.13
✓ ✓ ✓ 1.41 86.66 96.66 99.11

Table 2: Ablation studies of different components of
our method on the hand dataset.

Fig. 3: Effects of various
losses for training DG.

Fig. 4: Zero-shot performances using various (a) models, (b) heads, and (c) layers.

template image without leveraging additional unlabeled data as those meth-
ods do [17,19,23]. On the Head dataset, our method obtains an MRE of 1.82
mm, which is over 19% superior to EGTNLR method with an MRE of 2.27 mm.
Also, our method outperforms other one-shot methods by a margin of more than
10% in terms of the SDR under 2 mm, 2.5 mm, and 3 mm. Similar results can
be found on the Hand dataset, where we achieve an improvement of at least
16% in terms of MRE (1.41 mm vs 1.69 mm) and more than 10% for the SDR
under 2 mm. The much higher SDR results under small thresholds indicate that
our method can localize more landmarks in a low error. Fig. 2 shows that the
predictions from our FM-OSD method are closer to the ground truth points.
Ablation Studies. Table 2 shows ablation studies on the key components of
our method with the Hand dataset. Since BDM is a inference strategy for feature
similarity matching without the need of training, we first apply it to the original
features extracted by the frozen image encoder of foundation models. Leveraging
our proposed BDM strtegy, the performance significantly improves by 0.9 mm in
MRE. By introducing the global decoder and the local decoder under a coarse-
to-fine scheme, the MRE can be reduced to 1.86 mm and 1.41 mm, respectively.
Moreover, to show the efficacy of the distance-aware similarity learning loss, we
replace it with a contrastive learning loss by taking all the pixels on the feature
map except the target point itself as negative samples and an MSE loss posed
on the similarity map guided by a ground truth map whose value is 1 for the
target point and 0 for others (See Fig. 3). The MRE results for the training
of the global decoder on the hand dataset are 4.54 mm and 2.33 mm for the
two losses, respectively, whereas using our proposed loss can obtain an MRE of
1.86 mm. Fig. 4 (a) compares the results of various image encoders from several
popular foundation models. DINO-S is chosen in this work considering its stable
performance on both datasets and the small model size, but our proposed method
can be applied to others without modifications. We also compare the impacts of
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which transformer head and which layer the feature is extracted from in Fig. 4
(b) and (c). The transformer heads include the key, query, value and token (the
output of a transformer block). Generally, the key head and the ninth layer can
obtain accurate results on both datasets, and are thus used in our work.

4 Conclusion

This paper proposes a foundation model-enabled one-shot landmark detection
framework for medical images. With careful designs to tackle the challenges of
adapting foundation models to landmark detection, our proposed method can
obtain significantly superior results using solely a single template image than
other one-shot methods which even use plenty of unlabeled data. However, we
only validate the efficacy of our method on 2D images. More evaluations on 3D
datasets and cross-modality settings will be conducted in our future studies.
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