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Abstract. Every day, countless surgeries are performed worldwide, each
within the distinct settings of operating rooms (ORs) that vary not only
in their setups but also in the personnel, tools, and equipment used. This
inherent diversity poses a substantial challenge for achieving a holistic
understanding of the OR, as it requires models to generalize beyond
their initial training datasets. To reduce this gap, we introduce OR-
acle, an advanced vision-language model designed for holistic OR do-
main modeling, which incorporates multi-view and temporal capabili-
ties and can leverage external knowledge during inference, enabling it
to adapt to previously unseen surgical scenarios. This capability is fur-
ther enhanced by our novel data augmentation framework, which sig-
nificantly diversifies the training dataset, ensuring ORacle’s proficiency
in applying the provided knowledge effectively. In rigorous testing, in
scene graph generation, and downstream tasks on the 4D-OR dataset,
ORacle not only demonstrates state-of-the-art performance but does so
requiring less data than existing models. Furthermore, its adaptability is
displayed through its ability to interpret unseen views, actions, and ap-
pearances of tools and equipment. This demonstrates ORacle’s potential
to significantly enhance the scalability and affordability of OR domain
modeling and opens a pathway for future advancements in surgical data
science. Our code, pretrained models and data is publicly available at
https://github.com/egeozsoy/Oracle.

Keywords: Semantic Scene Graph · Holistic OR Domain Modeling ·
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1 Introduction

The Operating Room (OR) is a dynamic and complex environment, demanding
precise coordination, rapid decision-making, and flawless execution for successful
surgical outcomes. While there is a critical need for automatic holistic modeling
of the OR to enhance surgical data science (SDS) [10,13,17], the inherent vari-
ability and complexity of surgeries present significant challenges. These range
from differences in workflows and setups to the diverse tools and staff involved,
complicating the development of scalable models. In the field of SDS, many
⋆ Equal contribution.
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Fig. 1. An overview of our end-to-end scene graph generation architecture. ORacle
takes as input multiview images and optionally additional knowledge and directly gen-
erates a scene graph token by token, considering all information at once.

works have focused on specific tasks such as detecting the surgery phase [25,4],
actions [15,7,14,24], tools [9,19,27], identifying anatomies [6], or visual question
answering [23,2]. Recently, Özsoy et al. [18], introduced the task of holistic OR
domain modeling using semantic scene graphs, an accompanying dataset, 4D-
OR, as well as a baseline method, which used the 3D point clouds and images
from a timepoint to predict the scene graphs. In their follow-up work [16], the
authors proposed to use memory scene graphs for efficient modeling and integra-
tion of temporality and improved the accuracy and consistency of their results.
However, these approaches face limitations in real-world applicability. Their re-
liance on expansive hardware setups, including six 3D calibrated RGB-D cam-
eras, poses a barrier to widespread adoption, particularly in resource-limited
settings. Moreover, these methods struggle with generalization, often failing to
adapt to minor changes in the OR environment, such as variations in tool color.

Simultaneously, the advent of Large Vision-Language Models (LVLMs) has
revolutionized the field of computer vision by demonstrating remarkable capa-
bilities in understanding complex visual content [1,5,12,11]. Their proficiency in
processing and responding to natural language makes them ideally suited for
integrating additional contextual knowledge. Yet, their potential in OR model-
ing remains untapped, partly due to the unique challenges of translating their
capabilities to the nuanced and variable domain of surgical procedures.

To address the limitations in generalization and dependency on extensive
hardware, we propose ORacle, a novel approach building upon the strengths
of LVLMs for scalable and adaptable OR modeling. ORacle uniquely generates
semantic scene graphs in an end-to-end manner directly from only multiview
RGB images, circumventing the need for intermediate predictions or annota-
tions such as human poses or object locations. To use multiple camera views
efficiently and robustly, we introduce a multiview image pooler, which encodes
a variable number of images from different perspectives into a unified represen-
tation. Furthermore, ORacle is the first method that supports the integration of
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multimodal knowledge, such as temporal information and detailed descriptors of
OR tools and equipment, allowing adaptation to changes not seen during train-
ing without the need for extensive re-recording and retraining. To encourage an
effective use of knowledge, we design an automatic data augmentation pipeline,
enhancing the variability of 4D-OR. Lastly, we create and release a challenging
digitally altered subset of the publicly available 4D-OR, enabling the evaluation
of the adaptability and robustness of OR modeling approaches. ORacle achieves
state-of-the-art results on scene graph generation on the 4D-OR dataset and
sets a strong baseline for adaptability across varied settings. By eliminating the
dependency on costly depth sensors, showcasing robust performance from even a
single camera perspective, and enabling knowledge guidance, ORacle paves the
way for accessible, cost-effective, and adaptable holistic OR modeling, with the
potential to significantly impact surgical data science.

2 Method

2.1 Scene Graph Generation as Language Modeling

Scene graphs consist of nodes N , which correspond to entities in the scene,
and edges E, which represent their relationships. In this work, we represent
them as a list of triplets in the form of <subject, object, predicate> where
subject, object ∈ N and predicate ∈ E. This list of triplets can be concate-
nated into one string, allowing us to model the scene graph generation as an
image-to-sequence generation problem.

2.2 Architecture Overview

The two main components of ORacle are a visual processing module and a large
language model (LLM). The visual processing module converts images from one
timepoint T to a set of token embeddings in the feature space of the LLM. The
LLM processes both the visual information and optionally additional knowledge,
such as temporal history or textual and visual descriptors, and outputs a scene
graph. A visualization of our architecture can be seen in Fig. 1.
Visual Processing We propose a novel, transformer-based [26] image pooler to
enable ORacle to process a variable number of images x1, ..., xN from multiple
views. First, each image is encoded separately using a CLIP vision encoder [22].
Then, the individual patch embeddings of all images are concatenated and the
resulting sequence is processed by a transformer. Finally, we use the first N
tokens as a joint representation, where N is fixed to the tokens representing one
image. We then use an MLP to project this representation to the latent space
of the LLM in the form of image tokens.
Large Language Model The image tokens are concatenated with the optional
knowledge input and a scene graph generation instruction to form the input
prompt. The LLM then autoregressively outputs a scene graph token by token.

During training, we randomly sample and shuffle the input views to ensure
higher robustness to their number and order. Unlike previous methods [18,16],
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Fig. 2. An overview of our automatic variability enhancement pipeline, used during
training. It first samples a set of attributes, then generates a matching object. There-
after, it samples a suiting scene from 4D-OR and correctly places the sampled objects
into it. For examples of more realistic scenes used during evaluation, see Figure 3.

ORacle is trained entirely end-to-end, and learns to directly predict a scene graph
from the input, without the need for object detection or pose prediction.

2.3 Knowledge Integration

We design ORacle to allow the integration of knowledge, such as temporal con-
text or tool and equipment descriptors, improving performance and adaptability.
Temporal Context To efficiently integrate the surgery’s history, we condense
the scene graphs from previous time points into a surgery change log, represented
as a sequence of triplets. Inspired by LABRAD-OR [16], we handle the long and
short-term history differently. For the long-term history, we include every triplet
only once in the order they are first predicted, providing an approximate under-
standing of where the current time point is in the surgery. For the short-term
history, we include all predictions of the last five time points, letting the model
additionally know if actions are repeated and for how long they are performed.
This temporal knowledge is included as text in the prompt.
Textual Descriptors The goal of textual descriptors is to inform the network of
appearances of tools and equipment by describing their attributes in text form.
We define an attribute space consisting of the following five attributes: {object
type, color, size, shape, texture}. In this space, we can flexibly describe
relations and entities. Such descriptors allow to inform the network about new or
different-looking objects during inference time without the need for retraining.
Visual Descriptors With textual descriptors, it can be difficult to accurately
describe appearances. Therefore, we additionally introduce the concept of visual
descriptors, where we include a single image of the respective tool or equipment
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in the prompt, encoded using the frozen CLIP vision encoder. The global CLIP
embedding is projected into the LLM space, such that one object is represented
as a single token in the language space.
Symbolic Scene Graph Representation We want to enable our model to
work with unseen entities and predicates during inference in an open vocab-
ulary setting and pay more attention to the descriptors. To accomplish this,
in our adaptable models, we represent all objects and relations in a symbolic
space. For instance instead of <head surgeon, patient, drilling>, we represent a
triplet as <SUB, OBJ , PRED> with SUB,OBJ ∈ {A,B, ..., Z} and PRED ∈
{α, β, ...ω}. For every sample, we randomly pick symbols for all objects and pred-
icates and pair every symbol with its descriptor in the prompt. This forces the
model to rely on the descriptors instead of class names to make a correct pre-
diction. At inference time, we can guide the model to understand appearance
changes and recognize novel objects or predicates by adapting the descriptors.
Automatic Variability Enhancement The limited variability of tools and
equipment in 4D-OR hinders effective teaching of knowledge descriptor use. To
address this, we developed an automatic variability enhancement pipeline, de-
picted in Figure 2. First, we sample attributes describing a surgical tool or equip-
ment. Using stable diffusion XL [20], we generate an image that corresponds to
these attributes and remove its background using DIS [21]. Then, we select a
time point from 4D-OR and place the synthetic object in all views of the scene.
For placing tools, we leverage the hand location of surgeons and place them on
top. Equipment is placed over large objects in the scene, such as the anesthesia
machine or tables. In total, we use 200,000 such samples for training. Although
the resulting placements do not always appear as realistic as the scenes we are
evaluating on, we show that this still significantly enhances the model’s usage of
the accompanying textual and visual descriptors within the knowledge prompt.

3 Experiments

We conduct experiments to evaluate our models’ scene graph generation perfor-
mance and adaptability to unseen objects, predicates, appearances, and views.
Dataset We train and evaluate on 4D-OR [18] with the official data splits. 4D-
OR includes ten takes of simulated partial knee replacement surgeries, recorded
from 6 views with RGB-D cameras. ORacle only uses four views without depth.
All 6734 scenes are labeled with semantic scene graphs, phases, and human roles.
Adaptability Benchmark To objectively evaluate adaptability, we created a
set of 102 manually digitally altered 4D-OR images. This benchmark ensures

Table 1. Distribution of included entities and relations in our adaptability benchmark.
Relations and entities not existing in 4D-OR are marked with *.

cementing cutting drilling hammering sawing suturing Kuka* Mako* rob. sawing*

Nr. 12 12 12 12 12 12 10 10 10
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Table 2. Scene graph generation results on
the 4D-OR test set. SV and MV indicate
single view or multiview input, respectively.

MV Depth Temporal F1

4D-OR ✓ ✓ × 0.83
LABRAD-OR ✓ ✓ ✓ 0.88

ORacle-SV × × × 0.84
ORacle-SV-T × × ✓ 0.86
ORacle-MV ✓ × × 0.88
ORacle-MV-T ✓ × ✓ 0.91

Table 3. Ablation study on adapt-
able models, showing using sym-
bolic representation and adaptable
knowledge representations do not
lead to worse results on the 4D-OR
test set.

F1

ORacle-MV 0.88
ORacle-adapt-Text 0.87
ORacle-adapt-Vis 0.88

photo-realism by accounting for the appropriate context, orientation, and occlu-
sions, distinguishing it from the outputs of our automatic pipeline. It comprises
images captured from two distinct views and features a spectrum of tools and
equipment ranging from familiar yet visually altered to entirely novel types. Each
sample consists of a positive image with the digital alteration and a negative im-
age without the alteration, as well as a prompt textually and visually describing
the adaptations. The included relations and entities can be found in Table 1.

Evaluation Metrics Following previous works, for scene graph prediction, we
evaluate our model using macro F1 over all relation types and temporal consis-
tency between the time points. Additionally, we report precision and recall for
evaluation on our adaptability benchmark.

Implementation Details We initialize our LVLM with the weights of LLaVA-
7B [12], with a CLIP [22] based image encoder and Vicuna-7B [3] as the LLM. We
fully finetune the image feature extractor and finetune the LLM using LoRA [8]
on a Nvidia A-40 GPU. We train all our models until convergence, either on the
original 4D-OR dataset or the samples generated by our automatic variability
enhancement pipeline. For the temporal models, we closely follow LABRAD-
OR [16], including using curriculum learning, whereby a model previously trained
without temporal information is further finetuned using temporal knowledge.

Table 4. Results on our adaptabil-
ity benchmark.

Prec Rec F1

ORacle-MV 0.86 0.22 0.31
ORacle-adapt-Text 0.83 0.78 0.78
ORacle-adapt-Vis 0.92 0.63 0.71

Table 5. Results when only using view
two (F1-2) or six (F1-6). "noAug" indicates
training without order augmentation.

F1-2 F1-6

4D-OR 0.50 0.20
ORacle-MV-noAug 0.84 0.47
ORacle-MV 0.87 0.62
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Fig. 3. Results on our adaptability benchmark of the non-adaptable ORacle-MV model
(nA) and our adaptable models (A). Left: ORacle-adapt-text; Right: ORacle-adapt-vis.

4 Results and Discussion

Scene Graph Generation We compare ORacle to previous works on 4D-
OR in Table 2. Our best-performing model, relying on four RGB images and
temporal context, outperforms the previous SOTA, which additionally relies on
two more RGB images and six depth images, by 3%. ORacles’ predictions also
are temporally consistent, reaching a consistency score of 0.89 compared to 0.87
in LABRAD-OR [16], getting very close to the ground truth consistency of 0.9.
Without temporality, we outperform 4D-OR [18] by 5%, and get comparable
results even when relying on one single view. Overall, the results show that
both temporality and multi-view integration positively affect performance. In
Table 3, we show the results of our adaptable model variants, demonstrating that
performance remains similar when using the symbolic models with descriptors.
Downstream Tasks We evaluate our model on clinical role prediction and sur-
gical phase recognition. Unlike prior works, ORacle always outputs a scene graph
already including clinical roles, alleviating the need to explicitly solve clinical role
prediction. It achieves a macro F1 of 0.85, which is only slightly worse than 0.89
from LABRAD-OR [16], which relies on ad-hoc analyses, including tracking and
a secondary role prediction model. We also compare our model to the existing
SOTA in surgical phase recognition, closely following their methodology [17].
Without adapting any of the heuristics for mapping scene graph sequences to
surgical phases, we achieve an F1 score of 0.99, compared to their result of 0.97.
Adaptability We validate the robustness and adaptability of our method when
using textual and visual descriptors, depicted as ORacle-adapt-text and ORacle-
adapt-vis, respectively. We work in a single time point setting, therefore com-
paring the non-temporal ORacle models to the 4D-OR method [18].
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Table 6. Results when the colors of the
drill (orange) and saw (green) were dig-
itally altered to be the exact opposite
of each other only during evaluation.
"no switching" is provided as a base-
line value.

drill-F1 saw-F1

ORacle-MV no switching 0.94 0.98

4D-OR 0.06 0.06
ORacle-MV 0.0 0.0
ORacle-adapt-Text 0.08 0.35
ORacle-adapt-Vis 0.74 0.79

Table 7. Results when training with-
out drilling or sawing scenes. "full
training" corresponds to using these
scenes for training. Both 4D-OR and
ORacle-MV can not predict any unseen
predicates, indicated by N/A.

drill-F1 saw-F1

ORacle-MV full training 0.94 0.98

4D-OR N/A N/A
ORacle-MV N/A N/A
ORacle-adapt-Text 0.44 0.49
ORacle-adapt-Vis 0.79 0.52

Single View: Table 5 analyzes the robustness to using a single view during in-
ference. We evaluate all models on only view two, which was included in the
training views, and see that ORacle shows high robustness to this single-view
setting, reaching an F1 score of 0.87, which is only 1% less than using all four
views. Secondly, we compare performance on view six, which is a novel view
for ORacle, not used during training. Even though 4D-OR did use this view in
training, ORacle performs significantly better, demonstrating its high robust-
ness to novel views. Further, we ablate the effect of order augmentations during
multiview training, confirming that these are crucial for increasing robustness.
Novel appearances and objects: Table 4 shows the results on our adaptability
benchmark, and Figure 3 shows qualitative examples. Both adaptable models
perform significantly better than the non-adaptable model variant. This shows
both robustness to appearance changes of known tools and equipment as well
as to novel ones. We also digitally altered one take of 4D-OR, switching the
color of the drill and the saw in all frames. While both 4D-OR and ORacle-
MV get confused in this setting, our adaptable models, especially when using
visual descriptors, are substantially more robust towards this change, as shown in
Table 6. Lastly, we test the understanding of novel relations by training ORacle
on a modified training set, excluding all time points in which the drilling or
sawing relation occurs. Prior works and our non-adaptable model, cannot predict
relations that were not seen during training. Our adaptable models show a good
performance on these relations as shown in Table 7.

5 Conclusion

In this work, we propose ORacle, an adaptable knowledge-guided holistic OR
modeling approach building upon Large Vision-Language Models. Our method
generates semantic scene graphs end-to-end from multiview RGB images, by
employing a novel multiview image pooler. We introduce multimodal knowledge
guidance, which for the first time, allows adapting to previously unseen concepts
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in inference time. Our results show that ORacle reaches state-of-the-art results
not only in the benchmark task of scene graph generation but also demonstrates
significantly improved adaptability to unseen OR scenarios. By reducing the
requirement for extensive data collection and annotations, we believe ORacle
opens up a pathway for more affordable and scalable OR domain modeling.
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