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Abstract. Laparoscopic liver surgery poses a complex intraoperative
dynamic environment for surgeons, where remains a significant chal-
lenge to distinguish critical or even hidden structures inside the liver.
Liver anatomical landmarks, e.g., ridge and ligament, serve as important
markers for 2D-3D alignment, which can significantly enhance the spatial
perception of surgeons for precise surgery. To facilitate the detection of la-
paroscopic liver landmarks, we collect a novel dataset called L3D, which
comprises 1,152 frames with elaborated landmark annotations from sur-
gical videos of 39 patients across two medical sites. For benchmarking
purposes, 12 mainstream detection methods are selected and comprehen-
sively evaluated on L3D. Further, we propose a depth-driven geometric
prompt learning network, namely D2GPLand. Specifically, we design
a Depth-aware Prompt Embedding (DPE) module that is guided by
self-supervised prompts and generates semantically relevant geometric
information with the benefit of global depth cues extracted from SAM-
based features. Additionally, a Semantic-specific Geometric Augmenta-
tion (SGA) scheme is introduced to efficiently merge RGB-D spatial and
geometric information through reverse anatomic perception. The exper-
imental results indicate that D2GPLand obtains state-of-the-art perfor-
mance on L3D, with 63.52% DICE and 48.68% IoU scores. Together with
2D-3D fusion technology, our method can directly provide the surgeon
with intuitive guidance information in laparoscopic scenarios. Our code
and dataset are available at https://github.com/PJLallen/D2GPLand.

Keywords: Anatomical landmark detection · Laparoscopic liver surgery
· Landmark dataset · SAM · RGB-D prompt learning.

1 Introduction

Laparoscopic liver surgery allows surgeons to perform a variety of less invasive
liver procedures through small incisions, enabling faster patient recovery and su-
perior cosmetic outcomes [22]. However, it is difficult for surgeons to distinguish
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Fig. 1: Augmented visualization of liver tumor in the laparoscopic video via
anatomic landmarks. With consistent anatomical landmarks on 2D frames (mid-
dle) and 3D geometry (left), the preoperative 3D anatomy can be overlaid on
the intraoperative 2D image for augmented visualization guidance (right).

critical anatomical structures in the complex and variable laparoscopic surgical
environment, making it heavily dependent on the experience of the surgeon. In
this regard, augmented reality techniques tailored for laparoscopic liver surgery
are urgently desired to provide surgeons with auxiliary information for precise
resection and surgical risk reduction. The primary step in achieving augmented
reality clues is to automatically identify guiding markers on key frames from
intraoperative 2D videos and preoperative 3D anatomy samples, respectively, to
assist in intraoperative decision-making. Liver anatomical landmarks, e.g., an-
terior ridge and falciform ligament, have been validated as effective consistent
information for 2D-3D alignment[15,14]. As shown in Fig. 1, using 2D and 3D
landmarks as references, internal liver structures are available for intraoperative
fusion for enhanced visual guidance. However, accurate laparoscopic landmark
detection remains challenging due to the lack of annotated datasets and how to
comprehensively exploit the geometric information in video frames.

Traditionally, landmarks in laparoscopic augmented reality are defined as
points or contours [16,8]. In intricate surgical environments, however, the per-
formance of existing structure-based methods suffers from the instability of de-
tection accuracy due to susceptibility to interruptions and tissue deformation
together with the lack of global geometric information [18]. Additionally, tradi-
tional landmarks fail to provide semantic information for precise correspondence
between 2D and 3D medical images, which has great importance for estimating
cross-dimensional spatial relationships in laparoscopic liver surgery. To address
these challenges, we adapt silhouettes, ridges, and ligaments from laparoscopic
video frames as landmarks, which are continuous anatomies with clear semantic
features in the preoperative 3D anatomy, facilitating efficient 2D-3D alignment.

However, existing laparoscopic liver landmark datasets lack sufficient anno-
tations for training deep learning-based landmark models [1,20,17]. To address
the limited sample of liver landmarks, we build the current largest-scale laparo-
scopic liver landmark dataset, named L3D. Specifically, we invite four senior
surgeons to select 1152 critical frames from surgical videos of 39 patients at two
medical sites, while labeling each frame with three types of semantic landmarks.
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Table 1: Statistics of the L3D dataset. l, r, s are ligament, ridge, and silhouette.
Annotations Frames Tumor locations Cases Tumor sizes (mm) Cases

[l, r, s] 1,056 Quadrate lobe 7 10-19 3
[l, r] 3 Left lobe 11 20-29 10
[r, s] 74 Right lobe 21 30-39 16
[l, s] 19 Caudate lobe 0 40-49 10

Based on the proposed L3D dataset, we contribute a systematic study on 12
mainstream baselines [21,15,26,5,29,23,4,2,24,28,11,3]. We observe that existing
detection methods concentrate more on semantic feature capture and edge de-
tection while ignoring global geometric features of the liver region, especially the
depth information [13,15,14]. Hence, we delve into a straightforward and effec-
tive framework that leverages depth maps and pre-trained large vision models
to enhance the accuracy of detecting laparoscopic liver landmarks.

In this work, we introduce a depth-driven geometric prompt learning network
called D2GPLand. Specifically, we first employ an off-the-shelf depth estimation
model to generate depth maps that provide inherent anatomic information. Con-
sidering that Segment Anything Model (SAM)-based approaches [12,25] have
shown superior performance in extracting global high-level features in surgical
scenes, we adopt a pre-trained SAM encoder combined with the CNN encoder
to respectively extract RGB multi-level features and depth geometric informa-
tion. Then, a Bi-modal Feature Unification (BFU) module is designed to inte-
grate RGB and depth features. To distinguish highly similar landmark charac-
teristics in laparoscopic liver surgery, we propose a Depth-aware Prompt Em-
bedding (DPE) operation to highlight geometric attributes guided by prompt
contrastive learning and produce class-aware geometric features. Moreover, we
propose a Semantic-specific Geometric Augmentation (SGA) scheme to effec-
tively fuse class-aware geometric features with RGB-D spatial features, where
a reverse anatomic attention mechanism is embedded to focus on the percep-
tion of anatomical structures and overcome the difficulty of capturing ambigu-
ous landmarks. Extensive experimental results on the L3D benchmark show
that D2GPLand achieves a promising performance. Our method has great po-
tential to be applied in augmented reality-based intra-operative guidance for
laparoscopic liver surgery.

2 L3D Dataset

To facilitate the detection of laparoscopic liver landmarks, we establish a land-
mark detection dataset, termed L3D. Relevant information about patients and
annotation is shown in Table 1. To provide enhanced visualization guidance ef-
ficiently during the ever-changing surgical environment, we extract key frames
from laparoscopic liver surgery videos to annotate liver landmarks according to
the suggestions of surgeons. To this end, four surgeons are invited to select key
frames and label them, two of whom perform the labeling and the other two
check the labels. The selection criterion for the keyframes is to allow the surgeon
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Fig. 2: Overview of the proposed D2GPLand. s, l, r denote the three types of
landmarks, silhouette, ligament, and ridge, to be detected.

to observe the global view of the liver, which can greatly reduce anatomical mis-
perception during complex laparoscopic liver surgery. In our dataset, the ridge
landmark is defined as the lower anterior ridge of the liver, and the ligament land-
mark is defined as the junction between the falciform ligament with the liver. In
addition, the visible silhouette is also considered as a landmark category.

Our dataset is collected from two medical sites, and all surgeries are liver re-
sections for hepatocellular carcinoma (HCC). The annotators screen 1,500 initial
frames from 39 patient surgery videos with an original resolution of 1920*1080,
and retain 1,152 key frames after checking. We divide all samples in L3D into
three sets, where 921 images are used as the training set, 122 images as the
validation set, and 109 images as the test set. To ensure the fairness of the
experiment, images from the same patient are not shared across these sets.

3 Methodology

Fig. 2 outlines the architecture of the proposed D2GPLand. Our model first takes
key frame images from laparoscopic liver surgery as inputs and further generates
depth maps using an off-the-shelf depth estimation network (AdelaiDepth [27])
as auxiliary inputs to supplement the geometric information. Then, we employ a
ResNet-34 encoder [9] for RGB spatial feature extraction together with a frozen
SAM encoder [12] for depth geometric cue acquisition. Notably, the original
RGB frames are encoded through a CNN encoder to capture lower-level fea-
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tures for anatomical structure identification, while depth maps mainly provide
global shape attributes and geometric insights. Thanks to the transformer-based
structure and pre-training with large amounts of natural images, the SAM en-
coder exhibits heightened sensitivity towards global geometric features from the
depth modality. We conduct ablation studies for different encoder combinations
in Sec. 4.3. Subsequently, depth feature Fd is passed into the proposed Depth-
aware Prompt Embedding (DPE) module to highlight geometric attributes un-
der the guidance of semantic prompts and then output the class-aware geometric
features F s,l,r

G . In parallel, the Bi-modal Feature Unification (BFU) module is
applied to incorporate RGB feature Frgb and Fd, producing integrated features

Ff . Then, we interact geometric features F s,l,r
G focusing on different landmark

categories with the fused RGB-D features through our Semantic-specific Geo-
metric Augmentation (SGA) scheme to obtain augmented unified features Fa.
Finally, a CNN decoder is used to produce the detection maps. The following
subsections will elaborate on the key components of D2GPLand.

3.1 Depth-aware Prompt Embedding

To capitalize on the advantages of pre-trained foundation models while reducing
the computational costs for fine-tuning, we maintain the SAM encoder frozen in
our model. Nonetheless, it still requires further guidance for extracting semantic
geometry features related to landmark anatomy. To address this challenge, we
propose three randomly initialized efficient class-specific geometric prompts and
the DPE module to guide the extraction of geometric information related to
different classes from the features derived from the SAM encoder. As shown
in Fig. 2(a), we initially execute matrix multiplication between the input Fd and
the geometric prompts, generating spatial attention maps to highlight regions
associated with specific classes. Moreover, for each attention map, an element-
wise multiplication is applied to depth features with a residual operation to
obtain class-activated geometric features F s,l,r

G .
In addition, the proposed DPE module relies on discriminative prompts to

guide the class-specific geometry feature extraction. However, it is challenging to
learn precise class-specific prompts due to the highly similar landmark character-
istics of the liver. To enhance prompt discriminativeness for better guidance, we
apply the contrastive learning technique as illustrated in Fig. 2(b). Here we take
the silhouette prompt Ps as an example. Given the ground truth of the silhou-
ette landmark and Fd, a dot product is conducted on them, followed by taking
the channel-wise mean values to obtain the reference embeddings Rs. Upon ob-
taining all reference embeddings of the three landmark classes, we modify the
NT-Xent Loss [7] as the contrastive loss, formulated as follows:

Lcl =
1

N

∑
l∈L

log
exp(Pl ·Rl/τ)∑

k∈L exp(Pl ·Rk/τ)
, (1)

where N = 3 is the number of classes, L = {s, l, r} denotes the set of all classes,
and τ refers to the temperature-scaled parameter. This contrastive learning strat-
egy enhances the distinctiveness of the class-specific prompt representations.
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3.2 Geometry-enhanced Cross-modal Fusion

Bi-modal Feature Unification. To capture holistic landmark features, we
propose a BFU module to merge CNN-based lower-level structural features and
SAM-based global geometric features. As depicted in Fig. 2(c), we first adap-
tively adjust the channel weights of Frgb and Fd with Squeeze and Excitation
(SE) blocks [10] and add them together. Afterward, we embrace the local and
global average pooling modules to unify Frgb and Fd at different scales and
output the fused feature Ff .
Semantic-specific Geometry Augmentation. To further inject the class-
activated geometric information from feature F s,l,r

G into the fused feature Ff ,
we present the SGA scheme shown in Fig. 2(d). We concatenate each class-

specific feature in F s,l,r
G with the fused feature Ff respectively, and then obtain

the corresponding augmented feature F s,l,r
a by 3×3 convolutional block. Subse-

quently, we concatenate all three semantic geometric features and generate the
final augmented feature Fa. Considering the high similarity between anatomical
structure and surrounding tissue features, we also embed a reverse anatomical
perception module in the SGA to improve the sensitivity to ambiguous anatom-
ical structures. Inspired by reverse attention[6,19], we apply a sigmoid function
and reverse the attention weights to yield the anatomic attention maps. After-
ward, we interplay the attention map with Ff via element-wise multiplication
to predict anatomical features. Here, we use the dice loss as the anatomic Loss
Lana to supervise the anatomic learning.

3.3 Loss Function

In addition to the above-mentioned contrast loss and anatomic loss, we also add
the segmentation loss Lseg to the overall loss function to supervise the final
landmark detection map. In summary, the total loss function can be defined as:

Ltotal = λsegLseg + λclLcl + λanaLana, (2)

Lseg =
1

N

∑
l∈L

(L(l)
dice + L(l)

bce), (3)

where L(l)
dice denotes the Dice Loss, L(l)

bce denotes the binary cross-entropy (BCE)
loss. λseg, λcl, and λana are the balancing parameters for Lseg, Lcl, and Lana,
respectively. All balancing parameters are set to 1 for optimal performance.

4 Experiments

4.1 Implementation Details

The proposed D2GPLand is developed with PyTorch, and the training and test-
ing processes are executed on a single RTX A6000 GPU. We run 60 epochs for
training with a batch size of 4. A frozen pre-trained SAM-B [12] is implemented
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Table 2: Comparison with state-of-the-art methods on L3D test set.
Models Model Params DSC ↑ IoU ↑ Assd ↓

N
o
n
-S
A
M
-b
a
se
d UNet [21] 7.84M 51.39 36.35 84.94

COSNet [15] 81.24M 56.24 40.98 69.22
ResUNet [26] 69.73M 55.47 40.68 70.66
UNet++ [29] 9.16M 57.09 41.92 74.31
HRNet [23] 9.64M 58.36 43.50 70.02
DeepLabv3+ [5] 43.90M 59.74 44.92 60.86
TransUNet [4] 71.01M 56.81 41.44 76.16
SwinUNet [2] 27.17M 57.35 42.09 72.80

S
A
M
-b
a
se
d SAM-Adapter [24] 93.93M 57.57 42.88 74.31

SAMed [28] 183.55M 62.03 47.17 61.55
SAM-LST [3] 183.12M 60.51 45.03 68.87
AutoSAM [11] 101.43M 59.12 44.21 62.49
D2GPLand 139.03M 63.52 48.68 59.38

Input Ground truthDeepLabv3+ D2GPLand (ours)SAMed SAM-LST

Fig. 3: Visualizations of our D2GPLand and competitors on L3D test set.

in the depth encoder. We resize all the images to 1024×1024 and apply random
flip, rotation, and crop for data augmentation. The Adam optimizer is used with
the initial learning rate of 1e-4 and weight decay factor of 3e-5. In addition, the
CosineAnnealingLR scheduler is applied to adjust the learning rate to 1e-6. For
evaluation, we utilize the Intersection over Union (IoU), Dice Score Coefficient
(DSC), and Average Symmetric Surface Distance (Assd) as evaluation metrics.

4.2 Comparison with State-of-the-Art Methods

We compare the proposed D2GPLand with 12 cutting-edge methods on the
L3D test set. For a fair comparison, these methods are divided into two types:
(1) Non-SAM-based models, including UNet [21], COSNet [15], ResUNet [26],
DeepLabV3+ [5], UNet++ [29], HRNet [23], TranUNet [4], and SwinUNet [2],
and (2) SAM-based models, including SAM-Adapter [24], SAMed [28], Au-
toSAM [11], and SAM-LST [3]. All compared models were trained to converge
with their official implementations. As shown in Table. 2, D2GPLand outper-
forms competitors on all evaluation metrics. Compared to the top-ranked model
SAMed, our method improves 1.51% on DSC, 1.49% on DSC, and 2.17 pixels
on Assd metrics with 44.52M fewer parameters, demonstrating the effectiveness
of utilizing depth-aware prompt and semantic-specific geometric augmentation
for landmark detection. Besides, we observe that non-SAM-based methods ex-
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Table 3: Ablations for key Designs.
Methods BFU DPE Lcl SGA DSC IoU

M.1 59.34 44.90
M.2 ✓ 61.13 46.22
M.3 ✓ ✓ 61.98 47.12
M.4 ✓ ✓ 62.20 47.20
M.5 ✓ ✓ ✓ 62.41 47.34
M.6 ✓ ✓ ✓ 62.95 47.81
Ours ✓ ✓ ✓ ✓ 63.52 48.68

Table 4: Ablations for backbones.
Methods Backbones DSC IoU

Dual CNN ResNet-34 62.54 46.91
Dual SAM SAM 62.97 47.63

SAM+CNN
ResNet-34(Depth)
+ SAM(RGB)

62.83 47.39

CNN+SAM
ResNet-34(RGB)
+ SAM(Depth)

63.52 48.68

hibit inferior performance compared to most SAM-based methods. It illustrates
that the global geometric information extracted by the pre-trained SAM encoder
can enhance the perception of landmark features. Fig. 3 also exhibits the visual
results of D2GPLand and other well-performed methods. We can see that our
method provides more accurate detection of liver landmarks while mitigating
the impact of occlusion by other tissues and surgical tools.

4.3 Ablation Study

Ablations for Key Designs. Table 3 shows the contribution of each key design
in D2GPLand on the L3D test set. Notably, all variants are trained with the
same settings as mentioned in Sec. 4.1. The baseline (M.1) comprises a ResNet-
34 encoder and frozen SAM-B encoder, and we directly concatenate RGB and
depth features before feeding them into the decoder. Overall, each component
contributes to the performance of our model in varying degrees. Specifically,
M.2 and M.6 show the effectiveness of our BFU module in merging RGB and
depth features. Based on M.2, M.3 and M.5 sequentially integrate our DPE and
contrastive loss Lcl to further enhance the model performance. Further, M.4
adds the SGA scheme to M.2, resulting in 1.07% and 0.89% improvements in
DSC and IoU, respectively, indicating the advantages of geometric cues.
Backbone Selections. To explore the effect of different backbones in feature
extraction across RGB and depth modalities, we conduct additional ablation ex-
periments on L3D with the CNN-based encoder and the SAM-based encoder. As
shown in Table 4, D2GPLand achieves the optimal performance when leveraging
the ResNet-34 encoder for RGB inputs and the SAM encoder for depth modality.
This experiment further validates the description in Sec. 3 that the ResNet-34
encoder is more effective in capturing lower-level anatomical structural features
while SAM excels in extracting global geometric features.

5 Conclusion

This paper proposes a novel geometric prompt learning framework, D2GPLand,
for liver landmark detection on key frames of laparoscopic videos. Our method
utilizes depth-aware prompt embeddings and semantic-specific geometric aug-
mentation to explore the intrinsic geometric and spatial information, improving
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the accuracy of landmark detection. Moreover, we release a new laparoscopic
liver landmark detection dataset, L3D, to advance the landmark detection com-
munity. Experimental results indicate that D2GPLand outperforms cutting-edge
approaches on L3D, demonstrating the effectiveness of our method in captur-
ing anatomical information in various surgeries. We hope this work can pave
the way for extracting consistent anatomical information from 2D video frames
and 3D reconstructed geometries, thereby directly promoting 2D-3D fusion and
providing surgeons with intuitive guidance information in laparoscopic scenarios.
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