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Abstract. Medical image analysis suffers from a shortage of data, whether
annotated or not. This becomes even more pronounced when it comes
to 3D medical images. Self-Supervised Learning (SSL) can partially ease
this situation by using unlabeled data. However, most existing SSL meth-
ods can only make use of data in a single dimensionality (e.g. 2D or
3D), and are incapable of enlarging the training dataset by using data
with differing dimensionalities jointly. In this paper, we propose a new
cross-dimensional SSL framework based on a pseudo-3D transformation
(CDSSL-P3D), that can leverage both 2D and 3D data for joint pre-
training. Specifically, we introduce an image transformation based on
the im2col algorithm, which converts 2D images into a format consis-
tent with 3D data. This transformation enables seamless integration of
2D and 3D data, and facilitates cross-dimensional self-supervised learn-
ing for 3D medical image analysis. We run extensive experiments on 13
downstream tasks, including 2D and 3D classification and segmentation.
The results indicate that our CDSSL-P3D achieves superior performance,
outperforming other advanced SSL methods.

Keywords: Self-supervised Learning · Pseudo-3D transformation · Med-
ical image analysis.

1 Introduction

Medical image analysis often suffers from the lack of high-quality annotated
data, which hinders the development of this field. This is primarily due to the
labor-intensive and time-consuming nature of data annotation, especially for 3D
data such as CT and MRI scans. Recently, self-supervised learning (SSL) has
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emerged as a promising approach to reduce the demand for annotated data by
leveraging unlabeled data for representation learning [4, 7, 8, 18,25,26].

However, most existing self-supervised methods are typically confined to
training on either 2D or 3D data exclusively, due to the dimensionality dispar-
ity. The integration of 2D and 3D data for joint self-supervised training could
substantially increase the amount of pre-training data, potentially enhancing
the quality of representation learning for 3D medical image analysis. There have
been a few efforts to tackle this challenge. UniMiSS [23] proposes the adop-
tion of a switchable patch embedding module to accommodate both 2D and 3D
inputs. Nevertheless, this approach is only applicable to transformers and not
compatible with CNN models. Note that CNN is also a powerful neural architec-
ture, widely used in a variety of medical image analysis applications. Nguyen et
al. [16] proposed to integrate 2D CNNs with deformable attention transformers,
which can simultaneously extract 2D and 3D features. However, this approach
results in a disjoint representation of 2D and 3D features, and the overall rigid
architecture is not compatible with existing optimized neural architectures.

To tackle the aforementioned issues, we propose a Cross-Dimensional Self-
Supervised Learning framework based on a Pseudo-3D transformation, referred
to as CDSSL-P3D. This framework overcomes the limitations imposed by di-
mensional disparity and is not confined to specific neural architectures, making
it a genuinely cross-dimensional SSL strategy. Specifically, drawing inspiration
from the im2col [5, 19] technique employed in convolution computations, we
transform 2D images by sliding a window across them and unfolding the regions
within each window into columns. This approach enables us to treat 2D images
as 3D data. After this transformation, both 2D and 3D images can be concur-
rently fed into a neural network without necessitating any modifications to the
architecture itself. Consequently, this seamless integration permits the direct ap-
plication of existing SSL methods for the purpose of pre-training a 3D model. In
our experiments, we adopt the pretext tasks proposed by [26], which preserves
both pixelwise and semantic information in representation. We conduct model
pre-training on a dataset comprising 6,453 3D volumes and 377,088 X-ray im-
ages. With the inclusion of the substantial collection of X-ray images into the
training set, there is a noticeable improvement in performance for downstream
tasks of 3D classification and segmentation. As an additional benefit, perfor-
mance on 2D classification tasks can also be improved.

Overall, our contributions in this paper can be summarized as follows: (1) We
propose a novel approach (CDSSL-P3D) based on the im2col transformation to
tackle the challenge imposed by joint self-supervised pre-training using both 2D
and 3D data, making SSL more flexible with respect to image dimensionality. (2)
Our proposed method is compatible with the full spectrum of CNN and trans-
former architectures, not restricted solely to a specific neural architecture. (3)
Our CDSSL-P3D method achieves significant performance improvements across
13 downstream tasks, including 3D medical image classification and segmenta-
tion as well as 2D medical image classification.
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Fig. 1: The overall CDSSL-P3D framework. In the pre-training stage, 2D images
are converted to pseudo-3D images. Then, SSL is performed on the joint pseudo-
3D and true 3D data. During the fine-tuning stage, this pre-trained 3D model is
primarily used for downstream 3D tasks. As an additional benefit, downstream
2D classification tasks can be supported, and images in such 2D tasks go through
our pseudo-3D transformation before fed into the 3D model.

The overall process is shown in Fig. 1. During the pre-training phase, we
initially employ a pseudo-3D transformation to convert all 2D images into a 3D
format. Subsequently, we conduct self-supervised training of a 3D model using
both genuine 3D images and the transformed pseudo-3D images. This approach
enables cross-dimensional representation learning. This pre-trained 3D model
can be applied to 3D downstream tasks as usual. As an additional benefit, 2D
classification tasks can also be carried out by converting 2D images to 3D format
first using our pseudo-3D transformation. Inspired by the im2col transformation
used in convolution operators, we propose a pseudo-3D transformation in a sim-
ilar manner to convert 2D images into a 3D format.

2.1 Preliminary: image-to-column transformation (im2col)

The application of the im2col [5,19] method has been thoroughly investigated for
its effectiveness in transforming the Multiple Channel Multiple Kernel (MCMK)
problem into the framework of General Matrix Multiplication (GEMM). It is
widely used to accelerate convolution computation. As shown in Fig 2, assume
an input I ∈ RH×W×C and M kernels K ∈ RM×k×k×C . From the input I we
could construct a new input-patch-matrix Î by copying patches out of the input
and unrolling them into columns of Î. These patches are formed in the shape of
the kernel (i.e. k × k × C) at every location in the input where the kernel is to
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Fig. 2: The proposed pseudo-3D transformation inspired by im2col for MCMK
problem. (a) Detailed depiction of im2col. Input image I and convolution kernel
K are first unrolled into matrices Î and K̂, which are then multiplied to obtain
the output. (b) Pseudo-3D transformation. Inspired by the transformation of Î,
every instance of a sliding window over the entire 2D image X2d

i is unrolled to
obtain the pseudo-3D image Xp3d

i .

be applied. Afterwards, the dimension of the transformed input-patch-matrix Î
will be Hp ×Wp as:

Hp = k × k × C (1)

Wp = (
H + 2P − k

s
+ 1) · (W + 2P − k

s
+ 1) (2)

where P and s are padding and stride in convolution.
Once the input-patch-matrix Î is formed, we construct the kernel-patch-

matrix K̂ by unrolling each of the M kernels of shape k × k × C into one row
of K̂. The shape of the resulting matrix K̂ is M × (k × k × C). Then we simply
perform a GEMM between K̂ and Î to obtain the output Ô ∈ RH×W×M .

2.2 Pseudo-3D transformation based on im2col

Notation: We assume to be given 2D and 3D datasets {D2d,D3d} where D2d =
{X2d

i }, i ∈ [1, N2d] and D3d = {X3d
i }, i ∈ [1, N3d]. Denote 2D image X2d

i ∈
RH2d×W2d and 3D volume X3d

i ∈ RH3d×W3d×D3d .
Intuitively, transforming input image I into input-patch-matrix Î via im2col

motivates us to conceive a pseudo-3D transformation on 2D images. Specifically,
given a window size k×k and stride s, similar to a convolution kernel in im2col,
a 2D image X2d

i can be transformed to Xp3d
i ∈ RHt×Wt×Dt , where

Ht =
H2d − k

s
+ 1,Wt =

W2d − k

s
+ 1, Dt = k × k. (3)
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This transformation is slightly different from construction of input-patch-matrix
Î in im2col. In our strategy, the windows across rows and columns of X2d

i are
maintained in two dimension of Ht and Wt, instead of one dimension as Wp

(Eq. 2). Through such pseudo-3D transformation, the original information in
2D space is converted to 3D space. Such transformed data can be potentially
beneficial to capture complex 3D structure and texture representations in 3D
medical images for any 3D model. Using the proposed pseudo-3D transformation,
we are capable of generating large-scale 3D datasets that significantly surpass
the scale of existing publicly available 3D medical data. And, any 3D network
can be trained concurrently on both pseudo-3D data and true 3D volume data,
ensuring a seamless integration and finally a cross-dimensional SSL framework.

2.3 Learning Objective

The essence of this paper lies in cross-dimensional self-supervised learning, thus
it is not confined to any specific self-supervised training strategy; in principle,
all existing strategies are viable. We have opted for the relatively recent and
powerful approach PCRLv2 [26] as an example in this study. PCRLv2 addresses
information preservation in self-supervised visual representations from three as-
pects: pixels, semantics, and scales. First, a pixel-level objective of reconstruct-
ing the precise pixel-level details from corrupted inputs could force the model to
capture pixel information in feature representations. Second, high-level siamese
feature comparison is adopted to preserve semantic information in latent rep-
resentations. In addition, multi-scale reconstruction and feature comparison are
conducted to learn multi-scale representations.

2.4 Network

Our approach is not constrained to any specific neural architecture and is com-
patible with both prevailing architectures, CNNs and Transformers. For CNN,
we use a 3D version of ResNet-18 [9] as the encoder, a commonly used and effi-
cient network. In the pre-training stage, a U-like architecture with the encoder
stacked with a CNN-based decoder is adopted. Regarding transformer, we adopt
the pyramid vision transformer (PVT) designed for large-scale vision tasks [20],
which is also adopted in [23] for cross-dimensional SSL. Unlike that in [23],
our patch embedding strategy does not necessitate switching based on data di-
mensions, resulting in a unified and simplified model structure. Specifically, we
conduct experiments with PVT-small in this study.

3 Experiments

3.1 Datasets

Pre-training datasets. We collect 6,453 3D CT and MRI volumes from eight
public datasets (LUNA16 [17], RibFrac [12], TCIA Covid19 [1], AMOS22 [11],
ISLES2022 [10], AbdomenCT-1K [15], Totalsegmentor [22], Verse 2020 [14])
and 377,088 2D X-ray images from the MIMIC-CXR dataset [13] for cross-
dimensional self-supervised learning.
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Downstream datasets. To thoroughly evaluate the effectiveness of the pre-training,
we conducted comparative experiments across 13 downstream tasks. These tasks
can be categorized into the following groups: (1) 3D classification (MedMNIST
v2 [24], including six individual 3D tasks of various medical images), (2) 3D seg-
mentation (comprising six datasets of the Liver, Hepatic Vessel (HepaV), Pan-
creas, Colon, Lung, and Spleen dataset from Medical Segmentation Decathlon
(MSD) [2]), (3) 2D classification (NIH ChestX-ray) [21].

Table 1: Classification results of AUC on the test sets of the six 3D image
datasets from MedMNIST v2 [24]. The results of ResNet-18+3D is taken from
the original paper [24]. The best results of each backbone are bolded and the
second-best are underlined.
Method Backbone organ nodule fracture adrenal vessel synapse average
ResNet-18+3D [24] 0.996 0.863 0.712 0.827 0.874 0.820 0.848
DINO [3] 0.995 0.890 0.707 0.847 0.918 0.810 0.861
SimSiam [6] 0.995 0.874 0.738 0.837 0.876 0.765 0.848
TransVW [8] 0.998 0.898 0.731 0.835 0.905 0.811 0.863
PCRLv2 [26] 0.995 0.894 0.740 0.853 0.930 0.798 0.868
CDSSL-P3D

ResNet-18

0.998 0.908 0.754 0.880 0.947 0.835 0.888
Rand. init. 0.980 0.876 0.651 0.824 0.907 0.770 0.835
UniMiSS [23] 0.996 0.894 0.724 0.853 0.927 0.847 0.874
CDSSL-P3D

PVT-small
0.993 0.930 0.761 0.857 0.960 0.912 0.902

3.2 Experimental Details

Pre-training setup. For the 2D MIMIC-CXR dataset, each image is resized to
224 × 224 after random crop and then transformed as a pseudo-3D patch. For
3D datasets, we randomly crop a patch from the whole CT volume with size
from {64× 64× 32, 96× 96× 48, 112× 112× 56, 128× 128× 64}. The cropped
patches are then resized to 64 × 64 × 32. The input patch size is determined
to strike a balance between preserving sufficient information for SSL and lower
computational complexity to a manageable level. As in [26], for a given input
image, a two-stage augmentation strategy is performed to corrupted it in global
and local aspects. Global augmentation includes random flip and random affine.
Local augmentation includes random noise, Gaussian blur, random swap, and
random gamma. We employ Adam as the default optimizer and a learning rate
with cosine decaying initial from 1e-3. The epochs of training is empirically set
to 200, with a batch size of 96.

Downstream training setup. For all the downstream tasks, only encoder is initial-
ized from the pre-trained models. For 3D classification tasks within MedMNIST
v2, the official test set is adopted to evaluate the models performance, and the
performance is measured by area under the receiver operator curve (AUC). Re-
garding 3D segmentation tasks, we randomly split the data of each task into
training, validation and test at a ratio of 7:1:2. The Dice score is employed as
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evaluation metric. For 2D classification of NIH ChestX-ray, the training, valida-
tion, test sets are also randomly divided as 7:1:2, and similarly, AUC is used as
the performance metric.

Table 2: Quantitative results on six 3D segmentation datasets. We compare the
Dice (%) on each dataset and average Dice (%) of all datasets. The best results
of each backbone are highlighted in bold and the second-best are underlined.

Method Backbone Liver HepaV Pancreas Colon Lung Spleen average
Rand. init. 75.2 60.3 60.1 30.6 42.2 92.1 60.1
DINO [3] 76.0 60.8 61.3 37.5 45.6 92.0 62.2
SimSiam [6] 76.6 62.3 61.2 32.5 46.2 92.0 61.8
TransVW [8] 76.9 61.1 61.9 32.7 46.5 93.4 62.1
DeSD [25] 76.8 62.2 61.8 40.2 52.5 93.9 64.6
PCRLv2 [26] 79.3 62.3 61.5 43.2 54.2 95.6 66.0
vox2vec [7] 78.5 63.8 61.8 32.6 47.2 96.1 63.3
CDSSL-P3D

ResNet-18

81.2 65.0 63.0 46.2 57.1 96.2 68.1
Rand. init. 77.9 63.6 63.5 39.3 49.3 93.5 64.5
UniMiSS [23] 81.1 64.3 64.1 44.6 56.7 95.4 67.7
CDSSL-P3D

PVT-small
82.5 67.8 65.5 50.4 60.5 96.2 70.5

3.3 Results

Comparing to other SSL Methods. The proposed CDSSL-P3D is compared with
random initialization, and seven advanced SSL methods including DINO [3],
SimSiam [6], TransVW [8], DeSD [25], PCRLv2 [26], vox2vec [7] and UniMiSS [23].
Note that the first six methods use CNNs as their encoder backbone and UniMiSS
[23] adopts a transformer as its backbone. In addition, only UniMiSS exploits
cross-dimensional data as ours while the first six methods use data with a single
dimensionality only. Thus, in the comparison experiments, the first six meth-
ods are pre-trained using data with the same dimensionality as the downstream
tasks. Our CDSSL-P3D and UniMiSS are pre-trained on all 2D and 3D data col-
lected for pre-training. As detailed in Tables 1, 2, the proposed CDSSL-P3D is
compared with the competitors primarily on 3D medical tasks including six 3D
classification tasks (Table 1) and six 3D segmentation tasks (Table 2). In addi-
tion, one 2D classification task (Table 3) is also conducted because downstream
2D classification tasks are supported by our pre-trained 3D model. The following
conclusions can be drawn from the tables: 1) SSL significantly enhances model
performance compared with random initialization. 2) Transformer-based mod-
els generally outperform CNN-based methods. 3) Our CDSSL-P3D framework
demonstrates notable performance improvements for both CNNs and Trans-
formers, confirming the effectiveness of our cross-dimensional strategy on the
two predominant neural architectures. 4) CDSSL-P3D achieves the highest per-
formance across all tasks, surpassing the second-best methods, PCRLv2 [26] and
UniMiSS [23], by 2.0%, 2.8% (3D classification), 2.1%, 2.7% (3D segmentation)
and 1.0%, 1.6% (2D classification), respectively. Note that the performance does
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not deteriorate with the 3D model compared with the 2D model on the NIH
ChestX-ray dataset, indicating that employing pseudo-3D transformations for
2D downstream tasks does not incur a loss in performance (first and sixth rows in
Table 3). Furthermore, given the substantial size of the NIH ChestX-ray dataset
(over 100,000 images), we conduct additional experimental comparisons at vary-
ing training data ratios (Table 3). The results indicate that the CDSSL-P3D
framework consistently provides the most significant improvement across differ-
ent ratios, with particularly notable improvements at smaller training set sizes.

Table 3: Quantitative results of different SSL strategies on NIH ChestX-ray
dataset for 2D Classification, measured by AUC under different ratios of training
data. The best results are bolded and the second-best are underlined.

Method Backbone 10% 30% 50% 100%
Rand. init.

ResNet-18 2D

0.695 0.735 0.774 0.808
DINO [3] 0.723 0.790 0.787 0.818
SimSiam [6] 0.728 0.785 0.789 0.819
TransVW [8] 0.715 0.753 0.788 0.816
PCRLv2 [26] 0.770 0.809 0.819 0.828
Rand. init. ResNet-18 3D 0.703 0.745 0.772 0.805
CDSSL-P3D 0.778 0.818 0.827 0.838
Rand. init.

PVT-small
0.712 0.764 0.782 0.816

UniMiSS [23] 0.771 0.809 0.820 0.840
CDSSL-P3D 0.789 0.823 0.840 0.856

Ablation of pre-training with different dimension. A key contribution of this
paper is the joint pre-training of 2D and 3D data, which offers distinct advantages
over pre-training with data from a single dimension alone. To substantiate the
efficacy of joint pre-training, we have compared the models performance pre-
training with different data dimensions (2D, 3D, 2D+3D) on downstream 2D
(NIH ChestX-ray) and 3D (MedMNIST v2) tasks (shorten as NIH and MedM in
Table 4, 5, 6). This comparison is conducted on ResNet-18 as a example, which
is also adopted in the following ablation studies. As depicted in Table 4, joint
pre-training exhibits a significant enhancement compared to using either 2D or
3D data exclusively.

Ablation on window size. Table 5 presents the results under various window sizes
(3× 3, 5× 5, 7× 7). Overall, larger windows tend to yield superior performance
(5 × 5 and 7 × 7 outperform 3 × 3). Nevertheless, it is not the case that larger
windows always lead to better results. The optimal performance is achieved with
a 5x5 window size. We speculate that the advantage of larger window sizes may
be attributed to the compatibility with the dimensionality of 3D data, leading
to better joint pre-training integration.
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Table 4: Ablation of
SSL dimension.
dim MedM NIH
2D 0.863 0.828
3D 0.875 0.824
2D+3D 0.888 0.838

Table 5: Ablation of
window size.

window size MedM
3× 3 0.876
5× 5 0.888
7× 7 0.881

Table 6: Ablation of
sliding stride.

stride MedM
1 0.888
2 0.885
3 0.886

Ablation on sliding stride. Table 6 shows the comparison of model performance
under various stride settings. We evaluate the models at the optimal window
size of 5x5 to assess the impact of different strides. The results indicate that the
performance differences across strides are subtle, demonstrating the robustness
of our approach to changes of stride.

4 Conclusion

We propose a cross-dimension self-supervised learning strategy (CDSSL-P3D)
aiming to perform jointly pre-training of 2D and 3D data in medical images.
The introduced strategy is not confined to specific network architectures, which
can be applied for CNNs and Transformers. We conduct experiments with CNN
and Transformer on 13 downstream tasks and compare with a series of advanced
SSL methods. Extensive evaluation results amply substantiate the effectiveness
of CDSSL-P3D.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.
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