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Abstract. Recent studies have proposed quantitative ultrasound (QUS)
to extract the acoustic properties of tissues from pulse-echo data ob-
tained through multiple transmissions. In this paper, we introduce a
learning-based approach to identify thyroid nodule malignancy by ex-
tracting acoustic attenuation and speed of sound from ultrasound imag-
ing. The proposed method employs a neural model that integrates a
convolutional neural network (CNN) for detailed local pulse-echo pat-
tern analysis with a Transformer architecture, enhancing the model’s
ability to capture complex correlations among multiple beam receptions.
B-mode images are employed as both an input and label to guarantee
robust performance regardless of the complex structures present in the
human neck, such as the thyroid, blood vessels, and trachea. In order to
train the proposed deep neural model, a simulation phantom mimicking
the structure of human muscle, fat layers, and the shape of the thyroid
gland has been designed. The effectiveness of the proposed method is
evaluated through numerical simulations and clinical tests.

Keywords: Quantitative Ultrasound Imaging · Medical Ultrasound ·
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1 Introduction

Quantitative ultrasound (QUS) imaging, developed to extract tissue character-
istics due to pathological changes, plays a crucial role in early disease detec-
tion, potentially improving diagnostic accuracy and patient outcomes. Recent
advancements in deep neural networks (DNNs) have shown remarkable potential
in generating QUS image, with studies demonstrating significant improvements
in image quality and diagnostic reliability [?,?,?]. However, the majority of ex-
isting DNN-based QUS relying on fully convolutional neural networks (FCNs)
leaves room for improvement since FCNs are known to be ineffective in capturing



2 Y.-M. Kim et al.

global correlations. In addition, most commonly used multi-scanline transmis-
sion (MST) scheme that generates a series of focused beams through sequential
excitation of grouped transducers makes it even difficult to extract of wide range
correlations. In order to improve global correlations, Transformer model based
deep neural networks are proposed [?,?]. Transformer model extracts the global
range correlation while maintaining computational efficiency through the use of
patch embedding and multi-head attention mechanisms.

Preserving consistent quantitative imaging performance, irrespective of the
structural complexity of the target tissue, is a critical area of research in QUS. Oh
et al. [?] proposed a feed-forward neural style transfer framework that utilizes B-
mode image as an additional input, achieving improved image reconstruction by
leveraging structurally reliable B-mode information. However, the style transfer
framework requires additional supervisory layers to ensure the quantitative maps
generated by the network accurately reflects the structural intricacies observed
in B-mode images. Hence, the style transfer module trained on simulation phan-
toms can experience performance degradation when applied in the real-world
scenarios.

For training QUS networks in a data-driven manner, it is critical to have a
simulation dataset that can encompass a wide range of data distributions and
produce the necessary volume of data. For breast [?,?] and liver [?] QUS imaging
applications, multiple elliptical objects placed randomly are used as simulation
dataset. However, such simple overlapping ellipses cannot adequately represent
complex structures of the human neck such as the thyroid gland, trachea, and
arteries. Moreover, due to the structural consistency among individuals, there is
a need for a simulation phantom that accurately reflects the anatomy.

In this paper, we introduce QIT-net, a Quantitative Imaging technique for
Thyroid assessment. QIT-net quantifies acoustic attenuation (ATT) and speed of
sound (SOS) to identify the malignancy of a thyroid nodule. We propose a CNN-
Transformer hybrid architecture that combines the strengths of both CNNs and
Transformers. The CNN interprets RF signals locally, while the Transformer
identifies correlations among multiple beam patterns using a hierarchical en-
coder. Additionally, the network utilizes B-mode image and QUS maps to en-
hance its accuracy in reconstructing ATT and SOS of tissues. To train QIT-net,
we implemented two types of datasets: an elliptical object simulation phantom
representing general soft tissue and a simulation phantom representing the shape
and acoustic properties of the human thyroid gland.

2 Methods

The proposed system is modeled based on the Vantage 64LE (Verasonics Inc.),
operated in conjunction with a 5MHz linear array probe (Humanscan Inc.). The
probe consists of 128 transducer elements with a pitch size of 0.30mm. Ultra-
sound RF signals are obtained using MST beamforming with the transmission
window size of 32, focused at 30mm depth.
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Fig. 1. Two types of training dataset

2.1 Simulation Phantoms

For data-driven training, we utilized the strengths of two distinct datasets as
shown in Fig. 1. The general soft tissue phantom is design to replicate broad
diversity of the acoustic properties of the typical tissue (see Fig. 1-(a)). The
thyroid-mimicking phantom represents the unique anatomy and acoustic char-
acteristics of the human thyroid, thereby enhancing the accuracy of thyroid
nodule quantification (see Fig. 1-(b)). Both simulation phantoms are modeled
with dimensions of 45mm × 45mm and discretized on an 1800 × 1800 grid. For
simulations, in-silico model is created using an ultrasound simulation MATLAB
toolbox, k-wave [?].

General Soft Tissue Phantom General soft tissue phantom comprises up
to five ellipses with radii ranging from 2 to 30mm, randomly positioned within
the Region of Interest (ROI), as shown in Fig. 1 (a). The acoustic properties
of the soft tissue are modeled as follows [?]: the acoustic attenuation coefficient
varies from 0 dB/cm/MHz to 1.5 dB/cm/MHz, the speed of sound ranges from
1400 m/s to 1700 m/s, and the density varies from 0.9 kg/m3 to 1.1 kg/m3.
Additionally, a square speckle, ranging in size from 25 to 150 µm, is added with
a random concentration of 0-10 /wavelength2. In total, 14k general soft tissue
phantoms are simulated for training the QIT-net.

Thyroid-Mimicking Phantom The overall procedure for designing the thyroid-
mimicking phantom is depicted in Fig. 2. The anatomical structure of the human
neck is obtained from the Visible Human Project dataset [?], which includes
cross-sectional images captured from real human bodies (see Fig. 2-1). Manual
segmentation of the thyroid gland, cartilage, trachea, and blood vessels is per-
formed on 91 cross-sectional images. Muscle and fat layers are categorized into
five groups based on their brightness levels (see Fig. 2-2). Elliptical objects repre-
senting thyroid nodules are then inserted within the thyroid gland (see Fig. 2-3).
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Fig. 2. Overall procedure for thyroid-mimicking phantom design

Table 1. Acoustic properties of tissues in thyroid-mimicking phantom

Speed of Sound
[m/s]

Attenuation Coefficient
[dB/cm/MHz]

Scatter Diameter
[µm]

Scatter Concentration
[#/lambda2]

Blood 1550 - 1600 0.03 - 0.2 25 - 100 0 - 2

Fat 1400 - 1500 0.3 - 0.8 25 - 125 1.44 - 25

Muscle 1530 - 1650 0.8 - 1.5 50 - 150 2 - 36

Thyroid 1450 - 1550 0.8 - 1.5 200 - 375 4 - 10

Nodule 1400 - 1700 0.03 - 1.6 25 - 375 1 - 10

Trachea 340 - 360 5 - 10 25 - 150 0

Cartilage 1600 - 1700 5 - 10 200 - 375 4 - 10

The probe is positioned along the neck skin layer, and the ROI is defined accord-
ingly. To simulate tissue deformation caused by the pressure of the linear probe,
the label is deformed in the orthogonal axis to represent the compressed skin
layer (see Fig. 2-4). The acoustic properties of the tissues are modeled as demon-
strated in Table 1 [?]. In total, 3k thyroid-mimicking phantoms are simulated
for training the QIT-net.

2.2 Network Architecture

In this section, the architecture of the proposed QIT-net that reconstructs quan-
titative image including ATT and SOS from RF signals is presented. Following
the multi-scanline transmission (MST) beamforming method, the RF signal is
acquired NSL times by sequentially exciting groups of 32 out of 128 aligned
transducer elements. As illustrated in Fig. 3, the QIT-net is composed of four
components: convolutional RF encoder, hierarchical Transformer encoder, B-
mode morphology encoder, and quantitative image synthesizer.
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Fig. 3. QIT-net architecture

Convolutional RF Encoder RF signal is obtained from multiple ultrasound
transmissions, and is configured to x ∈ RNSL×Nch×NSamp where NSL, Nch, and
NSamp represent the number of scanlines, receiver channels, and the time sam-
ples, respectively. Each beam-formed RF signal is processed through a convolu-
tional operation to extract local signal features. Since MST generates an identical
TX beam pattern across the scanlines, the convolutional RF encoder is designed
to share CNN parameters among scanlines, thus facilitating RF pattern recog-
nition.

Hierarchical Transformer Encoder (HTE) HTE is proposed to capture
inter-correlations among multiple beam receptions while gradually reducing the
feature resolution from 128×128 to 16×16 through repeated patch merging.
Multi-scale feature representation, ε16, ε32, and ε64, is generated and fed to the
decoder for synthesizing the QUS image.

The standard multi-head attention (MHA) with the length of the sequence
N has computational complexity of O(N2) [?], which implies that the execu-
tion time and memory requirements are compromised. Since the real-time QUS
task is sensitive to inference speed, we incorporated spatial reduction attention
(SRA) [?] to enhance computational efficiency. The hierarchical architecture is
implemented using overlapped patch merging inspired by SegFormer [?].

B-mode Morphology Encoder (BME) B-mode image is generated through
a conventional model-based numerical algorithm known as Delay-and-Sum (DAS)
using the received ultrasound signals [?]. BME generates a feature map contain-
ing structural information of the target tissue, utilizing repeated convolutional
and pooling layers. The extracted semantic features (b16, b32,and b64) are then
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passed to the image synthesizer to provide positional markers for quantitative
image inference.

Quantitative Image Synthesizer The quantitative image synthesizer serves
two primary functions. Firstly, it incorporates acoustic information extracted
from RF signal based on the morphological structure obtained from B-mode
input. Secondly, it synthesizes the final quantitative acoustic image using the
multi-scale hierarchical structure.

The encoded features from B-mode (b16, b32, and b64) and RF signal (ε16, ε32,
and ε64) are fused to quantitative image using spatially adaptive demodulation
(SPADE) followed by a series of residual convolution blocks [?]. The SPADE is
denoted as

SPADE(br, εr) = γx,y,ch(εr)
br − µch(br)

σch(br)
+ βx,y,ch(εr), (1)

where morphological feature br is channel-wise normalized, and γx,y,ch(εr) and
βx,y,ch(εr) are learnable denormalization parameters. The SPADE operation pro-
vides the neural network with a detailed understanding of how quantitative value
distribution correlates with the observed target structure.

The proposed multi-scale image synthesis module is inspired by U-Net [?]
and HR-Net [?]. The decoder generates a higher resolution quantitative image,
G(x) ∈ R128×128, starting with the modulated image feature (SPADE(br, εr)).
Unlike the conventional successive up-sampling schemes [?], the proposed de-
coder consists of a parallel multi-resolution subnetwork. Each unit subnetworks
are designed with four residual blocks to enhance the stability of the training [?].

The low-resolution output images G16, G32, and G64, and the final predic-
tion map G128 are obtained using 1×1 convolution on feature map produced in
each stage of the decoder. The 1×1 convolutional layer is an intuitive module
that produces output with high spatial similarity among channels. Therefore, we
defined the network’s output as the concatenation of the ATT map, SOS map,
and median-filtered B-mode image to supervise the inferred QUS maps to ensure
morphological consistency with the input B-mode image.

2.3 Training Details

The objective function of the QIT-Net is defined as follows:

G∗ = argmin
G

E(x,y)∥y −G(x)∥2 + LSUB , (2)

where LSUB = E(x,yr)

∑
r∈{16,32,64}

∥yr −Gr(x)∥2. (3)

y is the ground truth quantitative image with full resolution, and y16, y32, and y64
are the down-sampled images of y with dimension R16×16, R32×32,and R64×64,
respectively. The network G∗ is trained to minimize the mean square difference
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Table 2. Quantitative assessment results

Baseline
B-mode
input

B-mode
Concatenated

label

ATT SOS

PSNR [dB]
MAE

[dB/cm/MHz]
PSNR [dB] MAE [m/s]

FCN-based
X X 25.52 0.056 22.16 20.7
O X 25.76 0.054 22.96 20.4
O O 26.26 0.053 23.53 17.4

CNN
+ Transformer

Hybrid

X X 26.57 0.047 22.81 19.8
O X 26.61 0.048 23.67 17.7
O O 27.86 0.041 24.60 15.6

between the ground truth y and the synthesized image G(x). Furthermore, Lsub

regularizes each subnetwork to progressively synthesize the corresponding reso-
lution of quantitative images y16, y32,and y64. The QIT-net is optimized using
Adam [?] with a learning rate of 10−4, β1 of 0.9 and β2 of 0.999. For every
convolutional operation, a dropout with a retention probability of 0.2 is applied
to improve the network’s generalization.

3 Experiments

3.1 Numerical Simulation

Performance Evaluation We evaluated the performance of QIT-net using 710
representative simulated test samples and assessed it based on the peak signal-
to-noise ratio (PSNR) and the mean absolute error (MAE). Table 2 presents
the results of ablation studies evaluating the effectiveness of additive B-mode
input and the proposed B-mode concatenated label against the baseline FCN
and CNN-Transformer hybrid encoder. The models with Transformers achieve
PSNR values of 27.01 dB and 23.69 dB for ATT and SOS reconstruction on
average, respectively, representing improvements of 1.16 dB and 0.82 dB over
the FCN-based model. Furthermore, while the additional B-mode input alone
yielded an average performance improvement of 0.49 dB, incorporating the B-
mode concatenated label led to an additional enhancement of 0.81 dB in PSNR
by reinforcement of morphological consistency.

3.2 Clinical Test

In-vivo thyroid measurements were obtained from 37 neck subjects with benign
masses (n=29) and malignant tumors (n=8), confirmed through aspiration. To
ensure the representativeness of the data and increase the sample size, each ma-
lignant tumor was measured twice, once along the transversal and longitudinal
axes. Quantitative values for each lesion were measured 30 times, and the average
values are recorded, as depicted in Fig. 4 (a)-(d).

In Fig. 4 (a), the reconstructed quantitative images from the clinical tests
are presented. Networks trained solely on general soft tissue phantoms, which
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Fig. 4. In-vivo thyroid nodule measurements

consist of multiple elliptical objects, tend to produce oversimplified structures,
lacking fidelity to delineate thyroid glands. In contrast, networks trained on both
elliptical objects and thyroid-mimicking phantoms are capable of demonstrating
detailed tissue structure. Notably, incorporating additional B-mode input and
concatenated B-mode labels significantly improves the structural reconstruction
accuracy and robustness.

As illustrated in Fig. 4 (b) and (c), benign masses exhibit lower acoustic
attenuation and speed of sound compared to malignant tumors. In Fig. 4 (d),
the receiver-operating characteristic (ROC) curve identifies malignancy using
QIT with an AUC of 0.939 for ATT and 0.919 for SOS. Furthermore, the ROC
curve defined by the sum of normalized ATT and SOS as a new variable is
represented by the green line, demonstrating an AUC of 0.969.

4 Conclusions

In this paper, we propose a single-probe US system for quantifying acoustic
attenuation and sound speed to identify thyroid nodules’ malignancy. In nu-
merical simulations, the CNN-Transformer hybrid model demonstrates a PSNR
improvement of 0.99 dB compared to a CNN only approach. Additionally, the
use of B-mode concatenated labels enhances the network’s performance, result-
ing in an improvement of 0.81 dB. Clinical test demonstrates that the proposed
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QUS system extracting ATT and SOS is able to determine the malignancy of
thyroid nodule with an AUC of 0.969. Furthermore, the proposed simulation
phantoms representing the actual structure and acoustic characteristics of the
thyroid gland are proven effective in achieving structural accuracy in in-vivo
settings. The proposed system can easily be employed in standard US systems
and has great potential for clinical use, particularly in the area of non-invasive
screening and differential diagnosis of cancer.
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