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Abstract. Real-time fusion of intraoperative 2D ultrasound images and
the preoperative 3D ultrasound volume based on the frame-to-volume
registration can provide a comprehensive guidance view for cardiac in-
terventional surgery. However, cardiac ultrasound images are character-
ized by a low signal-to-noise ratio and small differences between adja-
cent frames, coupled with significant dimension variations between 2D
frames and 3D volumes to be registered, resulting in real-time and accu-
rate cardiac ultrasound frame-to-volume registration being a very chal-
lenging task. This paper introduces a lightweight end-to-end Cardiac
Ultrasound frame-to-volume Registration network, termed CU-Reg.
Specifically, the proposed model leverages epicardium prompt-guided
anatomical clues to reinforce the interaction of 2D sparse and 3D dense
features, followed by a voxel-wise local-global aggregation of enhanced
features, thereby boosting the cross-dimensional matching effectiveness
of low-quality ultrasound modalities. We further embed an inter-frame
discriminative regularization term within the hybrid supervised learning
to increase the distinction between adjacent slices in the same ultrasound
volume to ensure registration stability. Experimental results on the re-
processed CAMUS dataset demonstrate that our CU-Reg surpasses ex-
isting methods in terms of registration accuracy and efficiency, meeting
the guidance requirements of clinical cardiac interventional surgery. Our
code is available at https://github.com/LLEIHIT/CU-Reg.

Keywords: Cardiac interventional surgery · Frame-to-volume registra-
tion · Ultrasound image.

1 Introduction

Cardiac interventional surgery has been widely used in the treatment of struc-
tural heart diseases, such as congenital heart disease and valvular heart disease
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Fig. 1. Schematic of cardiac ultrasound frame-to-volume registration.

[2]. Compared to DSA (Digital Subtraction Angiography) and CT, 2D ultra-
sound imaging has the advantages of low equipment requirements, easy opera-
tion, real-time imaging, and no radiation exposure, so ultrasound-guided cardiac
interventional surgery has become a new trend [1,15]. However, 2D ultrasound
imaging can only display one section of the heart at a time. Doctors need to
determine the position of the section in the heart structure reconstructed in
their mind, and further fusion the real-time ultrasound images with the virtual
cardiac anatomy to guide the surgical instruments [7], which requires extremely
high levels of doctor experience. Currently, 3D ultrasound imaging is also be-
coming increasingly popular to obtain the complete anatomical structure of the
heart [3,18]. To provide a complete guidance view for cardiac interventions, it
is necessary to explore frame-to-volume registration that fuse intraoperative 2D
ultrasound images and preoperative 3D ultrasound volumes in real time, which
shortens the learning curve of ultrasound-guided cardiac interventions.

The ultrasound frame-to-volume registration aims to seek a transformation
that optimally aligns the resampled slice from the given volume by the transfor-
mation with the 2D input image [6,5], as shown in Fig. 1. Existing registration
methods are divided into mathematical methods and deep learning-based meth-
ods. Mathematically, the registration task is usually modeled as an optimization
problem [17,14]. Although iteration-based methods can yield reasonable accu-
racy, they cannot meet the real-time requirements of cardiac surgical guidance
due to the slow registration speed. Currently, various deep learning-based meth-
ods are widely applied to the image registration task, such as directly learn-
ing target transformations [19,4], keypoint descriptors [16], and image similarity
metrics [8]. In the field of frame-to-volume registration, Hou et al. [10] utilized
a CNN-based model to predict rigid transformation of arbitrary 2D image slices
from 3D volumes, but only attained an average alignment error of 7 mm on
simulated MRI brain data. Yeung et al. [20] also employed a CNN to predict
the position of 2D ultrasound fetal brain scans in 3D atlas space. However, the
method only takes a set of images rather than image-volume pairs as input,
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Fig. 2. (a) Overview of the proposed CU-Reg, where VLGA is the voxel-wise local-
global aggregation; (b) The proposed prompt-guided gated cross-dimensional attention.

which results in poor generalization ability of the model among individuals. For
the ultrasound frame-to-volume registration, Guo et al. [6] introduced an end-
to-end registration network to align a 2D TRUS frame with a 3D TRUS volume.
However, this method extracts features from ultrasound images only using 2D
and 3D convolutions and directly concatenates them, which can be further en-
hanced by epicardium mask prompts to provide sufficient critical anatomical
cues and adequate cross-dimensional feature interactions for the registration of
ultrasound samples with low signal-to-noise ratios.

In this paper, we aim to accomplish a real-time and accurate cardiac ul-
trasound frame-to-volume registration to provide a complete guidance view for
cardiac interventional surgery under the beating heart. To address the feature
extraction difficulties caused by low signal-to-noise ratios and low tissue con-
trast in ultrasound images, we introduce epicardium mask prompts to provide
sufficient critical anatomical information. Specifically, a bi-directional prompt-
guided gated cross-dimensional attention (PGCA) operation is introduced to
produce abundant structure features and perform efficient interaction between
2D frame and 3D volume features. Further, we propose a voxel-wise local-global
aggregation (VLGA) module to efficiently integrate dense local-global features
across dimensions. To avoid the large registration errors caused by small differ-
ences between adjacent frame images, we embed an inter-frame discriminative
regularization term within our hybrid supervised learning to increase the dis-
tinction between adjacent slices in the same ultrasound volume to ensure reg-
istration stability. Additionally, we build a simulated cardiac frame-to-volume
registration dataset through post-processing the CAMUS dataset [13]. The ex-
perimental results demonstrate that our model achieves superior performance
compared to the state-of-the-art methods, e.g., a runtime of over 35 FPS and a
DistErr of 3.91 mm, which can meet the 5 mm accuracy requirement for many
cardiac catheterizations [12]. We hope our model can be applied for real-time
and accurate guidance in cardiac interventions.
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2 Method

2.1 Overview of the proposed CU-Reg

Fig. 2(a) illustrates the proposed lightweight end-to-end cardiac frame-to-volume
registration network, called CU-Reg. We consider real-time 2D ultrasound frame
images and 3D ultrasound volumes as fixed and moving images respectively [6],
and take them as inputs to our framework. CU-Reg outputs six parameters
{tx, ty, tz, rx, ry, rz} that uniquely determine the spatial transformation of the
2D image coordinate system relative to the 3D volumetric coordinate system.
Therein, the first three parameters determine the relative displacement between
the origin of the coordinate system, and the last three parameters determine the
rotation transformation matrix.

Given the moving image Uv ∈ RD×H×W and fixed images U i
f ∈ RH×W , i =

{0, 1, 2, 3}, where U0
f denotes the current anchor frame to be estimated and U1,2,3

f

denotes adjacent frames within the same volume. We initially utilize two indepen-
dent encoding branches to extract 2D slice features Fs and 3D volume features
Fv. For the 2D frame branch, we first use two Conv1d layers to normalize the
channel dimension by increasing the number of channels from 4 to 64 followed by
reducing it to 3, then feed frames into the CNN-based encoder [21] for multi-level
features. To encode the 3D volume, we employ three 3D convolutional blocks with
different kernel sizes to extract coarse-to-fine multi-scale features. Subsequently,
we introduced the epicardium prompt-guided cross-dimensional attention oper-
ation that leverages the epicardium mask prompt with the bi-directional gated
cross-dimensional attention block to spotlight critical anatomical features, pro-
viding informative alignment cues for ultrasound images. The enhanced features
are processed by our voxel-wise local-global aggregation module to boost the
fine-grained fusion of cross-dimensional representations. Finally, transformation
parameters are estimated via the pose predictor. Additionally, our model embeds
an inter-frame discriminative regularization term to highlight the discrimination
between adjacent slices within the same ultrasound volume, yielding a hybrid-
supervised training strategy to ensure registration stability.

2.2 Epicardium Prompt-guided Cross-dimensional Interaction

Due to the low contrast and signal-to-noise ratio of cardiac ultrasound slices,
relying solely on the encoder is insufficient to provide critical anatomical in-
formation for intraoperative and preoperative registration. In this regard, we
exploit epicardium masks as prompts to pinpoint tissue landmarks for better
alignment. Specifically, the features Fs extracted from the 2D image encoder are
passed through a Softmax layer to epicardium mask prompts. The predicted
epicardium mask is supervised by the ready-made ground truth during train-
ing. After passing the epicardium mask prompt through two 1×1 convolutions
for matching the dimensions of 3D volumetric features, we introduce a prompt-
guided gated cross-dimensional attention (PGCA) to improve the interaction
among 2D slice features, 3D volume features, and epicardium prompt features.



Real-time Cardiac Ultrasound Frame-to-volume Registration 5

Inspired by gated attention [11], PGCA dynamically regulates the feature depen-
dencies between features of different dimensions, thereby enabling more efficient
cross-dimensional interactions for capturing local-global features. Here, we em-
bed bi-directional PGCA operations, and the three inputs of each PGCA are the
cross-dimensional input C ∈ Rd×DHW , the primary input P ∈ Rd×DHW , and
the epicardium prompt E ∈ Rd×DHW , where P represents the current branch
features (Fs or Fv), and C means other corresponding branching features (Fv

or Fs). In addition, d and DHW denote the feature channel dimension and the
size of each feature map, respectively. As described in Fig. 2(b), we first perform
a linear projection of P ∈ Rd×DHW and C ∈ Rd×DHW with the SiLU function
to produce the queries Q, keys K, values V and gated vectors G:

Q = Wq ·C, K = Wk ·P, V = ϕ(Wv ·P), G = ϕ(Wg ·P), (1)

where Wq,Wk,Wv,Wg ∈ Rd×d denote the projection matrix, ϕ is the SiLU
function. Then, we obtain the enhanced 2D slice feature zs ∈ Rd×DHW and 3D
volume feature zv ∈ Rd×DHW via the prompt-guided cross-attention, which can
be formulated as follows:

zi∈{s,v} = P+ f(G · θ(Q ·KT /
√

dk) · V ) + f(E), (2)

where f(·) denotes the convolution operations, θ(·) is the standard Softmax
function, 1/

√
dk is a scaling factor and dk is the number of channels.

2.3 Voxel-wise Dense Local-Global Aggregation

After obtaining the sufficient interaction between ultrasound frames and vol-
ume features, it is essential to fuse cross-dimensional features for a cohesive
synthesis of critical structural details. To accommodate ultrasound registration
with multiple noises, we introduce a voxel-wise local-global aggregation module
(VLGA) to efficiently associate local dense cues with global geometric informa-
tion. Given the enhanced 2D slice features zs ∈ Rd×DHW and 3D volume features
zv ∈ Rd×DHW derived from bi-directional PGCA operations, we map the volume
feature of each voxel and its spatial corresponding slice feature to the same size
through 3D convolution and 2D convolution operations to generate voxel-wise
pairs of features. Subsequently, these feature pairs are concatenated and fed into
an MLP to obtain a global feature vector Fglo. Lastly, Fglo is concatenated with
the paired features, facilitating the acquisition of local-global context insights.
Our VLGA module can be summarized as follows:

Z = C[C[zs; zv];Max(MLP (C[zs; zv))], (3)

where C[; ] is the concatenation operation and Max(·) denotes max-pooling.

2.4 Hybrid Supervised Learning

In the training phase, we employ a hybrid loss function to supervise our model.
Unlike existing methods that jointly regress the pose parameters, we propose to
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predict the pose parameters separately by decoupling the rotation and transla-
tion branches so as to avoid discontinuity in the rotational space from disturbing
the prediction of translation parameters. Here, we use two MLP layers to regress
the rotation and translation parameters along with a smoothed L1 loss to su-
pervise the pose parameters. The translation loss Ltrans and rotation loss Lrot

are used to make the network converge quickly, and they can be formulated as

Ltrans =
1

N

N∑
i=1

smoothL1(T−T∗), Lrot =
1

N

N∑
i=1

smoothL1(R−R∗), (4)

where N is the total number of samples. T and R means the predicted poses
parameters, T∗ and R∗ are the ground truth. For prompt learning, we utilize
the MSE loss to directly supervise the predicted epicardium prompt E:

Lprompt =
1

N

N∑
i=1

||E−E∗||2, (5)

where E∗ is the ground truth of mask prompts. Moreover, to enlarge the discrim-
ination between neighboring slices in the same volume, we embed an inter-frame
discriminative regularization term Lreg to ensure the stability of the registration:

Lreg =
1

N

N∑
i=1

smoothL1(Df −D∗
f ), (6)

where Df ∈ R1×3 is the estimated inter-frame distance, which is predicted from
the aggregated feature Z by a separated MLP network, and D∗

f is the ground
truth. The inter-frame distance is defined as the Euclidean distance between the
translation vectors of the two adjacent frames. In addition, we leverage the MS-
SSIM loss Lsim for self-supervised training by constraining the similarity between
the resampled and input frames to make the training process more stable and
avoid overfitting. Overall, the hybrid loss function of CU-Reg is computed as

L = λ1Ltrans + λ2Lrot + λ3Lprompt + λ4Lreg + λ5Lsim (7)

where λn, n = 1, 2, ..., 5 are the hyper-parameters. In our implementation, we set
λ1 = λ2 = 1.0, λ3 = λ4 = 0.1, and λ5 = 0.5, respectively.

2.5 Implementation Details

Our model is trained by an Adam optimizer on a single RTX3090 GPU for 500
epochs with a batch size of 16. The inputs of CU-Reg are ultrasound slices
with the size of 128×128×1×1 and corresponding volumes with the size of
128×128×32×1. In the 2D ultrasound frame branch, we employ a ResNet-34 [9]
as the 2D encoder. In the training phase, the inputs are a current anchor frame
and three adjacent frames, i.e., 128×128×1×4. During inference, we manually
adjust the input dimension by repeating the number of channels four times.
The hyperparameter values are the optimal results obtained through ablation
experiments.
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Table 1. Comparative results and ablation analysis of our CU-Reg in terms of mean
values of quantitative metrics. ↑ / ↓ indicates the higher/lower the score, the better.

Methods DistErr
(mm)↓

Img
-NCC(%)↑

Img
-SSIM(%)↑

Transformation paprameters Run-time
(FPS)↑

TE(mm)↓ RE(◦)↓ Para
-NCC(%)↑

MRF-based [17] 4.02 87.14 60.06 2.51 6.49 72.83 0.1
FVR-Net [6] 5.84 65.49 47.77 4.22 7.87 56.60 36

CU-Reg 3.91 88.07 60.53 2.48 6.24 74.07 37
w/o PGCA 4.06 87.91 59.89 2.63 6.43 72.10 38
w/o VLGA 4.04 87.90 59.90 2.61 6.30 72.28 38
w/o PGCA&VLGA 5.06 82.36 53.28 3.07 6.93 67.11 39
w/o PGCA&VLGA&Lreg 5.47 77.17 48.26 3.83 7.40 61.98 39
Baseline 7.99 60.39 44.39 4.81 8.54 49.72 39

3 Experiments

3.1 Dataset and Evaluation Metrics

To evaluate the cardiac frame-to-volume registration network, a simulated dataset
is generated by post-processing the public CAMUS dataset [13]. CAMUS con-
tains 2D echocardiographic sequences with two- and four-chamber views of 500
patients, along with the masks of the left ventricular epicardium, these 2D se-
quences are expressed as 3D volumes in Cartesian coordinates with a unique
grid resolution using the same interpolation procedure. For each original 3D
volume, four transformations are generated by add random deviations to the
identity transformation, the deviations of translation parameters of each trans-
formation are within the range of 10 mm, and the deviations of the rotation
parameters are within the range of 20 degrees. Based on these transformations,
2D slices and corresponding masks are sampled from the original volume. The
sampled slices include 128×128 pixels, and the pixel spacing is 0.62 mm×0.62
mm. Meanwhile, a new volume is sampled from the original volume based on the
identity transformation with a volume size of 128×128×32 and a voxel spacing
of 0.62 mm×0.62 mm×0.62 mm. In this way, we can obtain four volume-frame-
mask pairs with true transformations for one original volume. All data are split
at the patient level, with 3,600 volume-frame-mask pairs for training and 400
volume-frame-mask pairs for testing.

For evaluation, we adopt the distance error (DistErr) to represent the average
distance of the center and four corners between the input slice and the predicted
slice. Normalized cross-correlation (NCC) and structure similarity index measure
(SSIM) are used as image similarity metrics. In addition, the translation error
(TE) denotes the L1 distance between the true and the predicted translation
vectors [tx, ty, tz], and the rotation error (RE) denotes the L1 distance between
the true and the predicted rotation vectors [rx, ry, rz].

3.2 Comparison with State-of-the-Art methods

We compare the proposed CU-Reg with the MRF-based conventional method [17]
and the deep model FVR-Net [6] on the test set of our simulated data. As shown



8 L. Lei et al.

Ground truth MRF-based method FVR-Net CU-Reg (Ours)

C
as

e 
1

C
as

e 
2

C
as

e 
3

Fig. 3. Qualitative comparison on the registration results of different methods, includ-
ing predicted slices and their difference heatmaps with the ground truth.

in Table 1, our model significantly outperforms FVR-Net for registration accu-
racy, e.g., about 33% decrease for the DistErr and 34% improvement for the
Img-NCC, which can be attributed to the interaction of cross-dimensional fea-
tures by the proposed PGCA and the augmentation of structural information by
the epicardium mask prompt. The visualization results in Fig. 3 also illustrate
that our model can perform remarkable registration outcomes. For registration
efficiency, CU-Reg is significantly faster than conventional MRF-based methods
(requiring multiple optimization iterations) by over 35 FPS, further confirming
the superiority of our model in enhancing registration speed.

3.3 Ablation Study

We conduct thorough ablation experiments on each key component of the pro-
posed CU-Reg, including the epicardium prompt supervision, a prompt-guided
gated cross-dimensional attention (PGCA), a voxel-wise local-global aggregation
module (VLGA), and an inter-frame discriminative regularization term Lreg. For
our baseline, we utilize the regular 2D frame and 3D volume encoders to extract
frame and volume features and directly concatenate them for feeding into the
pose predictor. As shown in the last two rows of Table 1, when we embed the epi-
cardium prompt supervision to the baseline, there is a significant improvement
in the perception of anatomical features of cardiac ultrasound images by CU-
Reg, e.g., about 17% increase in the Img-NCC metric. With the addition of Lreg

to our total loss function, the registration accuracy of our model is further im-
proved. Moreover, the proposed PGCA and VLGA play an indispensable role
in the overall model and drive our model to optimal performance when used in
synergy. Additionally, the last column of Table 1 illustrates the advantage of
our model in inference speed, thanks to the lightweight design of CU-Reg.
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4 Conclusion

In this study, we present a novel lightweight end-to-end model, termed CU-
Reg, for real-time and accurate cardiac ultrasound frame-to-volume registration.
Launched from the epicardium mask prompt, we present a bi-directional prompt-
guided gated cross-dimensional attention together with a voxel-wise local-global
aggregation module to efficiently interact and integrate 2D sparse features and
3D dense features to obtain sufficient registration information. Further, we also
introduce inter-frame discriminative regularization to increase the discrimina-
tion of similar frames by our model. The experimental results demonstrate that
the proposed CU-Reg outperforms the current state-of-the-art methods in both
precision and efficiency. Significantly, our model provides indispensable real-time
guidance view for cardiac interventional surgery. Furthermore, it can serve as a
bridge for ultrasound-CT/MRI registration and showcase the potential for im-
mediate application in cross-modal ultrasound-CT/MRI registration fields.
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