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Abstract. Accurate diagnosis of ocular surface diseases is critical in
optometry and ophthalmology, which hinge on integrating clinical data
sources (e.g., meibography imaging and clinical metadata). Traditional
human assessments lack precision in quantifying clinical observations,
while current machine-based methods often treat diagnoses as multi-class
classification problems, limiting the diagnoses to a predefined closed-set of
curated answers without reasoning the clinical relevance of each variable
to the diagnosis. To tackle these challenges, we introduce an innovative
multi-modal diagnostic pipeline (MDPipe) by employing large language
models (LLMs) for ocular surface disease diagnosis. We first employ a
visual translator to interpret meibography images by converting them into
quantifiable morphology data, facilitating their integration with clinical
metadata and enabling the communication of nuanced medical insight to
LLMs. To further advance this communication, we introduce a LLM-based
summarizer to contextualize the insight from the combined morphology
and clinical metadata, and generate clinical report summaries. Finally, we
refine the LLMs’ reasoning ability with domain-specific insight from real-
life clinician diagnoses. Our evaluation across diverse ocular surface disease
diagnosis benchmarks demonstrates that MDPipe outperforms existing
standards, including GPT-4, and provides clinically sound rationales for
diagnoses. The project is available at https://danielchyeh.github.io/
MDPipe/.
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1 Introduction

Ocular surface diseases (OSD) are various disorders impacting the anterior
segment of the eye, with Dry Eye (DE) being the most prevalent. DE significantly
impacts ocular surface health, vision, and quality of life, and is a predominant
reason for eye care visits globally [4,20]. Evaporative DE, the most common
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Fig. 1. Multi-modal diagnostic pipeline using LLMs for OSD diagnosis. The proposed
pipeline utilizes 1) a visual translator to transform meibography images into quantifiable
MG morphology, 2) an LLM-based summarizer to craft clinical reports, and 3) the
integration of clinical knowledge to augment LLM’s capability in diagnosing OSD.

subtype, is primarily attributed to Meibomian Gland Dysfunction (MGD) [14]
which is characterized by the glands’ failure to secrete a sufficiently thick and
well-organized lipid layer [3]. This results in increased tear evaporation, tear
film thinning and destabilization, leading to tear hyperosmolarity and premature
tear breakup, culminating in the discomfort associated with DE [24]. Traditional
diagnosis involves clinical assessments such as measurement of fluorescein tear
breakup time (FTBUT), noninvasive keratograph breakup time (NIKBUT),
grading of MG expressate, meibography imaging, as well as administration of
symptom instruments such as the Ocular Surface Disease Index (OSDI) [19]. Yet,
these approaches are time-consuming [27] and have poor reproducibility [15],
particularly in quantifying meibomian gland (MG) atrophy [6,1] where estimations
are subject to human bias and lack the accuracy for a definitive diagnosis.

Recently, efforts to employ machine learning (ML) in the diagnosis of OSD
have seen notable advancements. Initial efforts have concentrated on quantifying
MG morphology through imaging techniques [21,30] and segmentation models for
MG feature extraction [28,18,27]. As research evolves, there is a growing emphasis
on combining visual assessments of the MGs with clinical metadata [11]. However,
incorporating a diverse set of clinical variables into predictive classification
models results in closed-set predictions based on predefined sets of answers, and
treats clinical variables merely as data points without semantic relationships
or diagnostic rationale. Thus, understanding the clinical implications of the
metadata and how these variables relate to conditions such as DE remains an
ongoing challenge that requires further exploration.

The emergence of Multimodal Large Language Models (MLLMs) [16,34,13]
brings new light to this problem. MLLMs leverage the powerful abilities of
LLMs [17,26] while integrating visual data. MLLMs, when utilized for diagnostic
purposes [9,12,33], are capable of producing hundreds to thousands of free-form
answers with clinical reasoning, instead of being limited to closed-set predictions.
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However, several critical analyses of MLLMs reveal persistent challenges in accu-
rately representing visual data [25,32]. This issue becomes particularly pronounced
when dealing with rare domains or complex imagery, such as meibography (see
Fig. 2).

Addressing this gap, we pose two questions: 1) Can a model process meibogra-
phy images with the same level of attention and detail as a human clinician? and
2) Can the model make a precise and accurate diagnosis by focusing on specific
MG morphological features and quantifying those observations along with clinical
metadata? To answer these questions, we propose a novel multi-modal diagnostic
pipeline (MDPipe) that integrates patient clinical metadata and visual data for
OSD diagnosis through the use of LLMs (see Fig. 1). Specifically, we contribute
in three major aspects:

– We propose a visual translator to convert meibography images into quantifi-
able MG morphology data through an instance segmentation network. This
transformation allows us to bridge the visual data with clinical metadata,
effectively marrying detailed morphological insights with clinical context.

– To advance this integration, we introduce an LLM-based summarizer to
generate clinical report summaries to contextualize the insights from both
the non-narrative clinical metadata and the MG morphology data.

– We further collect clinical knowledge using real-life clinician diagnoses to
refine the LLMs with nuanced, domain-specific knowledge.

2 Method

2.1 Problem Formulation

Our objective is to develop a multi-modal pipeline integrating patient clinical
metadata M = (C,D) where C represents clinical measurements and D denotes
the clinician’s diagnosis, with meibography images I. This integration aims to
use LLMs to enhance ocular disease diagnostics by fine-tuning an LLM pθ to
diagnose patients using summarized clinical data.

We first use a report summarizer S implemented using GPT-4 [16] to con-
vert the metadata M and image data I into question-answer pairs (Q,A) =
S(M,V(I)), where V is a visual translator (in practice, implemented using a
pre-trained segmentation model) that extracts MG morphology from an image I.
The ultimate goal is to refine the LLM parameters θ∗ through the maximization of
the conditional log-likelihood, formalized as: θ∗ = argmaxθ

∑N
i=1 log pθ(Ai|Qi),

where N is the total number of cases. In practice, given new clinical data C∗ and
image I∗, we can generate a new query Q∗ = S(C∗,V(I∗)), which can then be
fed into the LLMs to predict the corresponding diagnosis A∗.

2.2 Visual Translator

MLLMs have known limitations when processing visual data and generating
corresponding representations. The intricate details captured in meibography
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Fig. 2. (a) Illustration of the limitations of current MLLMs in processing visual data,
including: 1) producing vague interpretations; 2) not delivering clinical significance
for ocular surface diseases, such as labeling "a black spot in the eye". (b) Our visual
translator V is designed to interpret visual data I by converting them into quantifiable
MG morphology data.

images present a particular challenge (see Fig. 2-(a)) due to their complexity
and the nuanced information they hold. To address this, we set out to construct
a model to process meibography images with the same level of attention and
detail as a human clinician and to quantify the observations. Building on prior
works [5,27], we introduced a visual translator V , designed to convert meibography
images I into quantifiable MG morphology data. This transformation served as
a bridge, linking the raw visual data with clinical metadata and thus weaving
together rich morphological detail with pertinent clinical context.

The visual translator operated through a two-step process. (see Fig. 2-(b))
Firstly, meibography images were passed to an instance segmentation network [5]
that automatically delineated individual gland regions. Secondly, a detailed
quantification of morphological features at the MG level was performed. By
automating these steps, the model enhanced the observational capabilities of
clinicians, providing a quantitative assessment of the glandular characteristics
that were emerging as important factors in diagnosing OSD.

With the visual translator, we were able to precisely measure morphological
features such as percent atrophy, gland density, average gland local contrast,
and dimensions of gland length, width, and tortuosity [31]. These measures were
quantified, allowing for an accurate depiction of the MG morphology, beyond
what manual estimation could achieve.

2.3 LLM-based Clinical Report Summarizer

As illustrated in Fig. 3 (left), the clinical metadata and MG morphology, derived
via the visual translator, presented in a discrete and non-narrative form. Our goal
was to input this fragmented data into GPT-4 [16] to synthesize a cohesive clinical
report summary for each case. The prompting structure provided to GPT-4,
depicted in Fig. 3 (middle), had three main components: 1) a task description, 2)
supporting examples, and 3) prompting the clinical metadata. Each component
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Fig. 3. We employed an LLM-based summarizer to generate Q&A clinical reports to
contextualize insights from both the non-narrative clinical metadata and MG morphology
to enhance LLMs’ learning capability.

was designed to guide GPT-4 toward generating an informative and clinically
relevant summary, which we delineated as follows:

Task Description. We first directed the model to perform the task of generating
a clinical report summary from clinical raw data. The instruction specified the
Q&A format, with the subject’s demographics, clinical, and morphological data
forming the questions, and the suspected OSD as the answer. This concise
directive ensured that the output was clinically informative and formatted.

Supporting Examples. Drawing from [10], we enhanced the model’s under-
standing by supplementing the task description with manually curated examples.
These examples served to illustrate the desired approach for crafting clinical
report summaries and were strategically employed to resolve ambiguities, guiding
GPT-4 toward producing outputs that aligned with clinical reporting standards.

Prompting the Clinical Metadata. Upon presenting the supporting examples,
we proceeded to prompt the model with a request to generate a clinical report
summary, attaching the raw clinical metadata subsequently. This approach
enabled the model to synthesize a clinical report summary that adhered closely
to our predefined instructions. Template can be found in the Appendix.

2.4 Refinement of LLMs with Clinical Knowledge

Fundamental Clinical Knowledge. To refine an LLM for ocular disease
diagnosis, we enhanced it with targeted knowledge using DE-specific clinical
terms and definitions extracted from 15 published DE clinical trials conducted
between 2015 and 2023 [23,22]. This information was formatted into Q&A pairs
with GPT-4, emphasizing common trial criteria like specific FTBUT ranges
and OSDI score thresholds. Our fine-tuning process re-focused the LLM on key
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medical data from DE clinical trials, potentially already within its training set,
to deepen its clinical understanding.

Real-Life Clinician Diagnoses. For the second refinement phase, we integrated
authentic clinical diagnostic cases to ground the LLMs in empirical medical
expertise. A dataset comprising 20 real-world cases was compiled by human
clinicians, encompassing both the clinicians’ diagnosis of various OSD (e.g.,
MGD, blepharitis), and the corresponding rationale underpinning these clinical
judgments. This dataset was effectively transformed into a series of Q&A pairs,
effectively inculcating the LLMs with the nuanced reasoning and decision-making
processes typical of seasoned clinicians.

3 Experimental Setup

Datasets. We utilized two multimodal datasets: CRC [28,27] and DREAM [2,8],
which included meibography images and clinical metadata. CRC is a curated
dataset that spans a spectrum from normal to moderate DE conditions. Con-
versely, the DREAM dataset primarily contains data from patients with moderate
to severe DE conditions. We merged these two datasets and, via our process-
ing pipeline, converted them into a QA-based clinical report format conducive
to diagnostic tasks. The resultant composite dataset contained a total of 3513
entries. Train/test split is 90%/10%. Training set has 1903 metadata-only and
1257 image+metadata instances; Test set has 198 metadata-only and 155 im-
age+metadata instances. There are a total of 878 subjects.

Metric. For quantitative analysis, we followed established benchmarks [29],
utilizing accuracy and F1 score. We also incorporated sensitivity (SN) and
specificity (SP) metrics. On the qualitative front, we engaged human clinicians in
a user study to grade the LLM’s diagnostic outputs across multiple dimensions.

Implementation Details. We chose the 7B and 13B versions of pre-trained
LLaMA-2 [26]. We obtained the model checkpoints from the official Huggingface
(NousResearch/Llama-2-7b-chat-hf, NousResearch/Llama-2-13b-chat-hf).
All models were able to train on four NVIDIA Geforce RTX 3090 GPUs (average
training time: ∼8 hrs). We used the AdamW optimizer with 0.03 warm-up ratio
and a learning rate of 2e-4. More details can be found in the Appendix.

4 Results

Comparison of General and Medical LLMs. In Table 1, we evaluate the
performance of various LLMs in diagnosing ocular diseases, specifically Dry
Eye (DE), Meibomian Gland Dysfunction (MGD), and Blepharitis. Notably,
GPT-4 demonstrates consistent performance across all three ocular diseases.
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Table 1. Comparison between general and medical domain-tuned LLMs for diagnosing
ocular diseases: Dry Eye (DE), Meibomian Gland Dysfunction (MGD), and Blepharitis.
Evaluation criteria include accuracy, sensitivity (SN), specificity (SP), and F1 score.
Our MDPipe outperforms existing benchmarks across three ocular diseases.

Method / Disease
DE MGD Blepharitis

Acc. SN SP F1 Acc. SN SP F1 Acc. SN SP F1

General LLMs without fine-tuning

Llama [26] 49.8 93.2 14.7 60.5 40.6 88.7 17.1 55.9 44.7 28.5 55.3 30.8

GPT-3.5 [17] 57.7 86.7 32.7 64.9 48.6 95.5 25.6 60.6 49.2 31.3 61.9 33.8

Llama2-7B [26] 63.9 88.2 38.6 66.6 52.7 83.2 23.3 62.3 47.4 31.8 59.3 34.4

GPT-4 [16] 70.7 77.1 66.3 67.7 65.2 65.7 76.8 65.5 58.2 39.3 72.9 48.8

LLMs fine-tuned on medical domain data

Med-Alpaca [7] 62.5 87.3 33.5 70.3 53.4 84.7 28.2 61.9 54.9 53.8 55.8 49.7

PMC-LLaMA [29] 73.3 73.1 77.7 75.8 63.6 70.7 61.5 64.7 60.5 50.3 74.4 56.8

MDPipe-7B (ours) 86.9 89.3 84.3 87.8 76.1 67.2 81.7 69.2 71.2 56.3 79.7 63.8

MDPipe-13B (ours) 89.5 88.2 91.0 89.9 74.4 61.4 82.9 65.7 73.1 58.7 80.1 65.1

This proficiency is likely attributed to its extensive pre-training across a broad
dataset, encompassing a range of medical knowledge, which may contribute to
its enhanced ability to generalize across different domains.

When considering models fine-tuned on medical domain data, PMC-LLaMA
showed notable improvements over general LLMs, achieving an accuracy of 73.3%
for DE, demonstrating the advantage of domain-specific fine-tuning. However, our
MDPipe models significantly outperform all other models, achieving an accuracy
of 86.9% for DE, 81.7% for MGD, and 79.7% for Blepharitis.

Ablation Studies. In Table 2, we investigated the impact of various train-
ing variables within our MDPipe on the diagnostic accuracy of the pre-trained
LLaMA2-7B model. The variables considered were clinical metadata, MG mor-
phology data, MG expression (quality and quantity scores), and real clinician
diagnoses. We found the inclusion of MG morphology notably improved perfor-
mance, especially in MGD diagnosis, increasing accuracy from 65.5% to 74.4%.
This suggests the significant role of morphological features in detecting MGD.

User (Clinician) Preference Study. A user (clinician) preference study was
performed to evaluate the performance of our MDPipe and GPT-4 in diagnosing
OSD. A series of three random cases were presented with the appropriate diagnoses
and rationale. Specifically, 5 clinicians were masked as to which model produced
each output, and then asked to read and rate the two models’ output on a
scale from 1 (poor) to 5 (best) regarding 1) clinical accuracy, 2) diagnostic
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Table 2. The impact of various training variables within our MDPipe on ocular disease
diagnosis. Notably, it is observed that MG morphology is essential in MGD diagnosis.

Pretrain
+ Training Variables in MDPipe Diagnosis Acc. (%)

Metadata | Morphology | MG-Express. | Real Diag. DE MGD Bleph.

LLaMA2

✓ ✗ ✗ ✗ 83.5 65.5 69.4

✓ ✓ ✗ ✗ 84.1 74.4 68.8

✓ ✓ ✓ ✗ 85.8 75.6 70.1

✓ ✓ ✓ ✓ 86.9 76.1 71.2

Fig. 4. Comparative evaluation and clinician study between MDPipe and GPT-4.

completeness, 3) diagnostic rationale, and 4) the model’s robustness to handle
ambiguous or incomplete patient data.

Figure 4 depicts the comparative study between MDPipe and GPT-4 using
two clinical cases. In case 1, our MDPipe surpasses GPT-4, as evidenced by
higher scores in accuracy and rationale. MDPipe’s diagnostic responses apply
DE criteria (e.g., FTBUT < 10 sec and Schirmer’s test measurements < 10mm),
which suggests a successful incorporation of DE clinical trials into the LLMs as
detailed in Section 2.4. Conversely, GPT-4 seems to lack a nuanced interpretation
of clinical measurements. For instance, one clinician remarks "The OSDI is <13
and normal, I would not consider 0.95 bulbar hyperemia to be signs of dry eye",
implying a potential gap in GPT-4’s understanding of the subtleties within
clinical scale values and their association with disease states. In case 2, MDPipe
exhibits shortcomings in completeness, as noted by a clinician’s feedback, "The
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diagnosis does not take into account MG expression and morphological data..."
pointing out the omission of some variables, indicating a potential oversight of
comprehensive variable consideration in the diagnostic process.

5 Conclusion

MDPipe makes a significant novel contribution to ocular disease diagnosis by
harnessing LLMs to address the limitations of current diagnostic methods. We
integrate a visual translator that quantifies the visual data and clinician expertise
for robust reasoning. As evidenced by benchmarking and the user study, MDPipe
demonstrates a significant improvement in accurate OSD diagnosis with clinically
relevant rationale. For future work, expanding the dataset of real-life clinician
diagnoses and clinically verified variable scales promises to further refine the
robustness and depth of LLM-generated rationales.
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